
Level 1: Disk Archaeology
We start off with an .img file, which we can see is an ext4 file system.

Mounting and browsing the file system yields nothing interesting. In relation to the challenge's
name of archaeology, I decided to use the file recovery tool photorec on the ext4 file system.
One of the recovered ELF files seem to contain a mention of the flag.

Opening it in IDA, we see that we half have the flag in terms of the string, while the other stuff is
generated using the LIBC rng.

Of note, inspection of the binary shows that it uses the musl LIBC rather than glibc. So, by
loading in the library with python and recreating the algo, we get the flag. (If the flag is not
correct I might have made a mistake when recreating for writeup, I can't resubmit the flag.)

Flag: TISC{w4s_th3r3_s0m3th1ng_l3ft_ubrekeslydsqdpotohujsgpzqiojwzfq}

Level 2: XIPHEREHPIX's Reckless Mistake
I won't be analysing the source code in detail here.

To sum it up, the code does these:
1. Generate 20 256-bit keys from a fixed seed "PALINDROME IS THE BEST!"
2. Initialise null key named key256

3. For every 20 bits in user input, the n-th bit denotes whether to XOR the n-th key
with key256

XOR cancels out in pairs, so if the n-th key is XOR'd an even number of times, it is equivalent
not XORing it at all, and if it's odd, it is XOr'd. So since each of the 20 keys can either be XOR'd
or not XOR'd with key256 there's effectively only 2^20 = 1048576 possible key combinations we
can try, which is brute forceable.

I modified the given prog.c (included in attachment) to conduct the aforementioned brute
force, looking out for 'TISC' in the decrypted string.

Flag: TISC{K3ysP4ce_1s_t00_smol_d2g7d97agsd8yhr}

Level 3: KPA
The description of the last bytes being corrupted was a red herring. Based on the PKZip file
format, the APK is missing its ZIP file comment in its central directory ending, which is neither
recoverable nor important.

We can just unzip the apk file and decompile its class files. We then zoom in on the file which
mentions the flag.

The code logic is straightforward: given the right string that matches the hash, the code will do
some processing to make it into the final flag. I didn't really see where the string could come
from, but recalled the apk contained binary libraries. These libraries use JNI to communicate
with the Java side of things in the app, so I used Ghidra with the JNI plugin here
(https://github.com/Ayrx/JNIAnalyzer/blob/master/JNIAnalyzer/data/jni_all.gdt) to analyse the
x86 version of libkappa.so.

https://github.com/Ayrx/JNIAnalyzer/blob/master/JNIAnalyzer/data/jni_all.gdt

IDA is a bit more intelligent with its string detection (compared to line 29-35 above).

Essentially, the library is registering a native (i.e. non Java) function with the class
"com/tisc/kappa/sw". From its signature, it takes no arguments and returns a string, presumably
the one we want.

If we look carefully at the code in 0x1201f0 or sub_201f0, there is no use of any library code
until they concatenate two strings with std::operator+<char>. Afterwards, it seems to be
cleaning up memory. The code before this simply does some operations.

As loading a JNI library properly on a desktop Linux system is not easy, I wrote a small program
(included) to mmap the library in memory and let sub_201f0 run its course right up to the C++
library function.

The call to the C++ function has two interesting strings for its 2nd and 3rd arguments. One
character was skipped at the start as those were the length of the C++ strings. Since the C++
function being called seems to be concatenation, based on the context of the use of question
and exclamation mark, the string was probably "ArBraCaDabra?KAPPACABANA!".

By copying out the Java flag processing code and running it locally, I got the flag.

Flag: TISC{C0ngr@tS!us0lv3dIT,KaPpA!}

Level 4: Really Unfair Battleships Game
We see a game when we open the given appImage on Linux, which works fine.

The first part of the challenge would be to extract the actual game logic. Since appImage files
are actually squashfs packages, we can extract them. Inside, we see files related to chromium,
which hints that this is not a game coded natively, but with some web technology. We find
"resources/app.asar", which proves the intuition right: asar files are Electron packages. By
extracting the asar file, we get a bunch of html and javascript files in the dist directory. By
hosting a web server in the directory, we see that the game is playable from the browser using
its actual source.

Using the chrome browser to debug the game is extremely advantageous in this case, as its
source viewer can automatically beautify minified Javascript code, and better still insert
breakpoints via the beautified source.

I won't delve into too much details to leave some time for later writeups. Essentially, as the
server sends all the information on the battleships to the client side, we can easily cheat by
looking at it. On the 256 tile grid labelled 0 to 255, clicking on the x-th tile will call this function to
check if we succeeded.

Just clicking every tile that causes d to return true is not enough, we will only get a victory, not
a flawless one. What matters is the order we click them.

It is unnecessary to understand the intention behind this code; knowing only its logic suffices.
Based on two values n and r obtained from the server, we generate an array based on the order
our clicks came in. Only when the array is in sorted order do we get a flawless victory. This was
the code I came up with to solve the challenge:

a = $('.grid').children;function d(t, x) {return (t.value[Math.floor(x / 16)]

>> x % 16 & 1) === 1}; [...Array(255).keys()].filter(x => d(temp1, x)).map(x

=> [`${temp2.value.toString(16).padStart(16, "0")[15 - x %

16]}${temp3.value.toString(16).padStart(16, "0")[Math.floor(x / 16)]}`,

x]).sort().map(i => a[i[1]].click())

It first finds all the tiles we should click, and then sort it in the order we should click them. To use
it, we first need to set a breakpoint at the start of function E. This function gets all the information
we need from the remote server. We then step twice to get to the end, and save t, n and r as
temp1, temp2 and temp3 respectively using Chrome's console.

We can then resume the Javascript code and enter my exploit script, which gets us the flag.

Flag: TISC{t4rg3t5_4cqu1r3d_fl4wl355ly_64b35477ac}

Level 5: PALINDROME's Invitation
We are given a Github repository to start with. After taking a look through the repository, I came
to two conclusions:

1. We should not be modifying the repository (e.g. submitting pull requests), which some
other contestants have done. If a challenge can be solved this way, the organisers will
have to deal with vandalism, and furthermore exploits can be easily seen by later
players.

2. Testing should be done on my own local repository to replicate observed behaviours.

The Github action here tries to curl a link with a parameter, both of which are secret.
Unfortunately, the key thing here is that the parameter's URL encoding by curl seems to have
confused Github, which would normally censor out secret information in logs. We can see that
while it is censored correctly in the command line at line 1, all the secret information is quickly
revealed in lines 11, 12 and 14.

We just have to visit http://chals.tisc23.ctf.sg:45938/ and use the key
":dIcH:..uU9gp1<@<3Q"DBM5F<)64S<(01tF(Jj%ATV@$Gl". Of note, the key does have some
meaning:

http://chals.tisc23.ctf.sg:45938/

Given the contextual clues of the mentions of Discord and token, I did some googling and
realised the token was used in Discord logins.

However, I was off by a bit. Checking the token with online user token checkers yielded nothing,
which made me realise it's actually a bot token. There is conveniently a tool online for logging in
with the token here (https://github.com/aiko-chan-ai/DiscordBotClient). Logging in should yield a
screen showing a single server with the anime character Anya, which I fortunately got.
Unfortunately, later on, some players seem to have broken the challenge by making the bot
leave the intended server, as shown below:

https://github.com/aiko-chan-ai/DiscordBotClient

Inside the server PALINDROME's secret chat room, the messages between Anya and her
mother provided an ID, which is the user of the BetterInvites bot
(https://thymedev.github.io/docs/betterinvites/). This bot allows users to create Discord invite
links that automatically give roles to users of the links.

By looking through the audit log of the server, we spot invite links to the #flag channel.

https://thymedev.github.io/docs/betterinvites/

Joining with any of these invites brings us to the #flag channel with the flag. This challenge is
decently creative and breaks away from the standard OSINT challenges.

Flag: TISC{H4ppY_B1rThD4y_4nY4!}

I didn't realise there were two paths and since I chose Web first, I did it throughout.

Level 6: The Chosen Ones
Rather simple challenge that is an outlier among the harder challenges.

Inspecting the source of the website linked, we see some form of encoded text.

From experience working with Scramblesuit passwords, I recognise the uppercase and digit
encoding as Base32. This gives us a portion of the page's PHP source code:

Even though the return value is not the full internal state, we can simply brute force the internal
state as code + 1000000 * k (code included). Given a pair of consecutive codes, we can
predict the next. After entering the correct code, we are brought to the following page:

After some preliminary testing with the cookie rank caused 500 internal server errors, I
suspected that it might be vulnerable to SQL injection. Fortunately, there is a guide online that
perfectly describes on how to exploit a cookie based SQL injection here
(https://stackoverflow.com/questions/24366856/how-to-inject-a-part-of-cookie-using-sqlmap).
We start off with this command:

sqlmap.py -u 'http://chals.tisc23.ctf.sg:51943/table.php' --cookie='rank=1*;

session=<session>; PHPSESSID=<phpsessid>' -p 'rank'

--skip='PHPSESSID,session' --fresh-queries --dbs

My intuition turned out to be right:

The rest is straightforward: we list the database palindrome's tables to find the table
CTF_SECRET. Dumping its rows we get the flag.

https://stackoverflow.com/questions/24366856/how-to-inject-a-part-of-cookie-using-sqlmap

Flag: TISC{Y0u_4rE_7h3_CH0s3n_0nE}

Level 7: DevSecMeow
This is an extremely interesting challenge for someone with next to zero background in Cloud,
learnt a lot on AWS.

With the given page, it is not immediately obvious how to approach the challenge. We first
navigate to the details submission page.

It took quite a while to make sense of the two links as they seemed to be invalid if simply
opened in the browser. Based on the hint of "upload" and "download" as well the link's
extensions of CSR and CRT, I understood the task. To authenticate to the temporary credentials
page, we need to provide our own client cert. On this current page, we can submit a certificate
signing request to get a certificate in order to access the second page. I generated my own self
signed cert and went ahead with it.

As a chrome browser user, I converted my key file and the cert into a p12 and loaded it into my
browser. I then navigated to the temporary credentials site.

As I have some experience working with AWS, I recognised the access and secret key to be
used for AWS access. To enumerate what the AWS account given is able to do, I used this tool
(https://github.com/shabarkin/aws-enumerator). I set the region to ap-southeast-1, or
Singapore. From the output, we see that we can do almost nothing, except something to do
CodeBuild and CodePipeline.

Without experience, these AWS services may seem rather foreign, but it is now clear to me at
time of writing. First, we take a look at CodePipeline.

Now its details.

https://github.com/shabarkin/aws-enumerator

A CodePipeline is essentially a list of steps (or stages) to take for a build process. The first step
is to take source code from the zip file rawr.zip at the S3 bucket devsecmeow2023zip. The
second step is to build the source code in rawr.zip using the CodeBuild project named
devsecmeow-build. Let's take a look at it.

We can gather 2 things:
1. The building process involves terraform, which is somewhat similar to a Dockerfile
2. We can get the first part of the flag, flag1, from the build environment

So, if we can upload a malicious terraform project in the form of a zip file onto
s3://devsecmeow2023zip/rawr.zip, we should gain access to the build process. Based on
online guides, command execution is simple, as shown:

After uploading the zip file, a reverse shell should pop up after a short while, giving us flag1 of
TISC{pr0tecT_

Following advice from this site
(https://cloud.hacktricks.xyz/pentesting-cloud/aws-security/aws-privilege-escalation/aws-codebui

https://cloud.hacktricks.xyz/pentesting-cloud/aws-security/aws-privilege-escalation/aws-codebuild-privesc

ld-privesc), I decided to visit the link given at AWS_CONTAINER_CREDENTIALS_RELATIVE_URI on
the CodeBuild machine and it gave me a new set of credentials. Of note, to use the aws

command, we need to add the session token to our credentials file as aws_session_token or
the impersonation will not work.

Rerunning aws-enumerator with the new set of credentials, we now see that we can read
some information on EC2 instances.

We see two running EC2 instances in Singapore. While the second has the IP of the temporary
staging server, the first has a new IP of 54.255.155.134.

It becomes clear that we have found the production instance based on its certificate name, and
furthermore it seems we need yet another round of mTLS, given the 403 error.

https://cloud.hacktricks.xyz/pentesting-cloud/aws-security/aws-privilege-escalation/aws-codebuild-privesc

Following online guides, I found out that EC2 instances could contain user provided data, and
decided to take a look.

By decoding the base64 encoded user data, we get the production CA cert and key. Now we
can reuse our previous CSR but sign it with the production's CA.

Now just load the p12 into chrome browser and I got flag2.

Flag: TISC{pr0tecT_yOuR_d3vSeCOps_P1peL1nEs!!<##:3##>}

Level 8: Blind SQL Injection
The first prize paying level. This challenge, along with level 10, are examples of cross-category
challenges done right. I really enjoyed them as I normally only work on pwn in CTFs.

Reviewing the source code, we have an app that offers reminders as well as a login system
using MySQL. Given user input, a serverless function on AWS lambda is executed with the input
and either indicates that the input is blacklisted, or provides an SQL query that the app can use.
The tricky part lies in that the AWS Lambda code is unseen.

Reviewing the other parts of the code reveals that the app also has a trivial local file inclusion
via submit-reminder. Since the file to render, viewType, comes from user parameters, we can
render any file we choose.

The LFI is not perfect as it stops displaying the files contents once it hits text that is invalid in
template format. However, that is still enough for us to dump the AWS credentials in
/root/.aws/credentials.

With aws lambda get-function --function-name craft_query, we get craft_query's
source code location in the form of an S3 link.

We now see that we are dealing with the actual processing code being in WASM.

While IDA is no good for this purpose, Ghidra fortunately can support WASM due to its
extendibility, with this plugin (https://github.com/nneonneo/ghidra-wasm-plugin). We start off with
the exported function craft_query.

https://github.com/nneonneo/ghidra-wasm-plugin

While the analysis process took some time, I will provide a summary here.
1. craft_query takes username as param1 and password as param2
2. function_4 does essentially strcpy with URL decoding, while function_15 does

memcpy with the fixed length of 0x3b bytes.
3. Using the dispatch call on line 19, the code will call the 1st entry of table0, which is

is_blacklisted.

On is_blacklisted, it:
1. Uses function_7 to check if a parameter fits the blacklist. This filter is impossible to

bypass for any SQL injection as the only characters that it allows are upper and
lowercase characters, which actually makes it a whitelist.

2. Either return the string "Blacklisted!" or use load_query to generate an appropriate SQL
query.

In order to get SQL injection, we have to not use is_blacklisted in the first place, and that
can be done by changing the dispatch location for line 19 in craft_query. Due to a
combination of function_4 not conducting bounds checking and username's buffer being
before local_C on the stack, we can do a one byte buffer overflow into local_C. By changing it
to 2, which is load_query in table0, our username and password is directly made into an SQL
query without blacklisting.

Using wasm2c from the wabt suite, I directly translated the WASM to C code and compiled it
with some minor modifications (code included). Now, we can test our theory.

It works perfectly. So, the strategy I devised was to end any SQL injection payload with the
comment string of ' -- ' to make MySQL disregard whatever that comes after, and then pad
it to 68 bytes before ending with the URL encoding of 2, which is %02.

Using sqlmap in this case would be unwise for two reasons: it does not play well with tamper
payloads that limit its payload size, which tend to be big, and furthermore we already have the
database schema so we don't really need sqlmap. With my limited SQL injection knowledge, I
coded a basic script that uses an AND condition to leak admin's flag/password.

Flag: TISC{a1PhAb3t_0N1Y}

Level 9: PalinChrome
While I do have experience working with V8 exploitation, the knowledge has long since been
rendered pretty obsolete. Nonetheless, basic knowledge with things such as native syntax, V8
object structures and optimisation requirements did help in working on this challenge.

The premise of the challenge is simple enough. It adds a builtin function that leaks an internal
Javascript object, theHole, which is a sentinel value. It is used to represent deleted entries in
dictionary-like data structures as well as gaps in arrays with holes.

To up the difficulty of this challenge, the given version has incorporated a patch that killed off a
commonly use technique of exploiting theHole leaks
(https://github.com/v8/v8/commit/66c8de2cdac10cad9e622ecededda411b44ac5b3).

https://github.com/v8/v8/commit/66c8de2cdac10cad9e622ecededda411b44ac5b3

We can no longer pass theHole as an argument to the delete function of any dictionary-like
data structure such as maps.

This challenge is somewhat lackluster; players can either develop their own novel technique in
the CTF duration, or search for existing techniques online. At that point, it either takes
experience and talent, or in my case, OSINT skills.

I first came across a possible way of solving the challenge from this Chromium issue
(https://bugs.chromium.org/p/chromium/issues/detail?id=1432210).

https://bugs.chromium.org/p/chromium/issues/detail?id=1432210

A theHole leak has been used in an in-the-wild exploit reported in 2023, way after the
hardening patch, meaning that a way is still possible. I gleaned from the issue that the CVE for
this vulnerability is CVE-2023-2033, so I went searching for any released exploits on Github.
This leads me to this repository (https://github.com/mistymntncop/CVE-2023-2033) (the other by
sandumjacob was absolutely useless).

From the looks of it, the exploit makes use of the rather common strategy of confusing the typer
during Turbofan optimisation and ultimately makes V8 incorrectly remove bounds checking on
arrays. An example of a similar style of exploitation can be seen here
(https://www.jaybosamiya.com/blog/2019/01/02/krautflare/).

I modified the exploit to use the given leakHole builtin. In addition, I removed a lot of unneeded
debug statements and decided to just dump the first value returned from leak_stuff.

The exploit does not work intiially.

To test the exploit's validity, we can force optimisations using native syntax commands, as
shown here:

https://github.com/mistymntncop/CVE-2023-2033
https://www.jaybosamiya.com/blog/2019/01/02/krautflare/

The display of a seemingly random floating point number indicates that the technique is in fact
valid. A floating point number of this magnitude usually indicates that some internal data has
been incorrectly converted to floating point.

Based on trial and error, the following code successfully triggers the optimisations needed:

Now, in fact, the entire exploit works, giving us a wealth of primitives. These include addrof as
well as v8_read64 and v8_write64, which gives us arbitrary read/write on the V8 heap. The
arbitrary read/write is not truly arbitrary due to the concept of V8's pointer compression, which I
have given a short talk on in the past here
(https://docs.google.com/presentation/d/1wRoTkhbwBkjeY8SDCFtqfQsyUED2IE_aQCGEr1Q1
EH0/edit?usp=sharing slide 11). We can read and write anywhere, but only if it's within a 32-bit
distance from the base of the V8 heap.

https://docs.google.com/presentation/d/1wRoTkhbwBkjeY8SDCFtqfQsyUED2IE_aQCGEr1Q1EH0/edit?usp=sharing
https://docs.google.com/presentation/d/1wRoTkhbwBkjeY8SDCFtqfQsyUED2IE_aQCGEr1Q1EH0/edit?usp=sharing

While the standard technique now will be to use an ArrayBuffer's backing store which actually
has a full 64-bit pointer (see https://yichenchai.github.io/blog/omnitmizer), this is no longer the
case due to V8 memory caging (https://www.electronjs.org/blog/v8-memory-cage), which
switched the full pointer to a half one as well.

At this point, based on the added note on the challenge commenting on the target machine's
memory, I assume that there's a way to bypass the cage using a large > 4GB allocation. I did
not choose to do this. This challenge is almost identical to one set in HITCON CTF 2022. Both
V8 challenges leaked theHole, and both have memory caging, with the only difference being
that the map delete technique still worked then.

From this writeup here (https://chovid99.github.io/posts/hitcon-ctf-2022/), we can in fact get RCE
without escaping the cage. The ingenious idea was to make the JIT generate benign x86-64
code using floating point integers that double as shellcode when you start execution off by a few
bytes in (i.e. shellcode smuggling). I just copied the shellcode smuggling part, and made some
minor adjustments for offsets, resulting in this exploit code:

https://yichenchai.github.io/blog/omnitmizer
https://www.electronjs.org/blog/v8-memory-cage
https://chovid99.github.io/posts/hitcon-ctf-2022/

The exploit works and I got the flag. Some words of advice to the author are to: 1. Turn off core
dumps, which were polluting the flag directory. 2. Use something other than pwntools for the
spawning of d8, as the EOF message may catch some players off guard, even though their
exploit actually succeeded. This challenge was really more of OSINT than pwn, but it might also
be because I have some experience with V8.

Flag: TISC{!F0unD_4_M1ll10n_d0LL4R_CHR0m3_3xP017}

Level 10: dogeGPT
A seriously complex challenge that got me $2500. While it was nowhere close to the level 10 in
TISC 2021, it did push me to my limits.

Playing around with the page given, we see that we have to register an account first:

We can start the dogeGPT service on a port with start.php:

The HTML comments reveal two more links, files.php and decrypt-flag.php. The latter
seemed to always give the same 401 error despite my best efforts. The former is a bit more
interesting, giving this:

It gives us the exe behind the dogeGPT service, as well as exposes the path of the server's
webroot, which will come in handy later. Of note, leaking the webroot path is possible without
this exposure, if we simply passed uname[]=, or a PHP array, to the registration page.

The reverse engineering of the exe was tedious, mainly because Microsoft Visual C++ with
optimisation levels 2 and above does heavy inlining of C++ STL functions. Effort is needed to
distinguish between the author's code and STL code, and yet more effort is needed to identify
the purpose of the STL code, since we do not have a function name. I compiled a C++ program
that used strings, vectors etc. and used its symbolicated decompilations to pattern match with
the given exe.

The following is a summary of my analysis. I will also include my IDA database in the form of an
i64 file as proof. If the i64 file gives some error with its packed version, please try the unpacked
version, I've encountered this issue when reviewing my work. There is no malicious payload
within the i64 file.

Normal operations
- The program hosts a TCP server on the port given by its 4th and last argument
- If the user's connecting IP matches its 2nd argument, they are granted access to use the

program's functionality
- We can enter any input, but there are four commands that implement special

functionality: help, start chat, end chat, get dogekey
- We can choose to start or end a chat with the commands "start chat" and "end chat"

respectively. On program start, a chat is automatically started for us.
- When we start a chat, the program adds the following files under C:\dogegpt to a global

variable vector, in this order: help.txt, adverbs.txt, vocab.txt, endings.txt.

- Likewise, when we end a chat, this vector is cleared.

- When we seek help using the help command, it reads the first file in the filepath vector

- Given an input that does not match any of the commands, the program runs a Python
parser with our input as its command line parameters.

- The parser gives one of the words in the input, followed by a comma and a number

- The program will return the aforementioned word to the user, as well as various words
from the adverbs, vocab and endings lists, which is not interesting

Easter-egg-like functionality
- This section documents functionality that only trigger based on specific input and is not

immediately obvious to the user, hence the name
- When a user enters a non-command input, the program takes the first 16 bytes, or half,

of the MD5 hex digest of the input and compares it with its 3rd argument. If it matches, a
boolean flag is set that allows the user to use the "get dogekey" command.

- "get dogekey" opens a global filename and prints out its contents. However, this is only
half of the puzzle as the filename is empty by default

- Next, we see that the aforementioned number returned by the parser is in fact added to
a global variable with a default value of 0xd06e.

- When this number accumulates to the equal to the last 4 digits of the aforementioned
half MD5 hash, it runs additional functionality. To give an example, if our half md5 hash
ends with d06f, an input that makes the parser give "input,1" will enable the functionality.

- The function open_key will set the filename needed by "get dogekey" to
c:\dogegpt\files\<IP>_<half md5 hash>, and write the 1st argument to the exe inside.
Now, we can use "get dogekey" to read it

Bug 1
- There exists one bug in the exe due to a seemingly bizarre design choice. Before

processing raw user input, the program first adds it to the back of the filepath vector.

- If we were to end a chat and flush out the filepath vector, our next input will be added to
the filepath vector as its first element. Since the help command opens and reads the first
element of the filepath vector, this gives us the ability to read any local file. Here is it in
action:

- Two points to note are that: 1. The program will reject input 3 seconds after ending a
chat, so we have to be quick, but that is not an issue with automated scripts 2. There is a
buffer size limit of 1234 bytes, which is the maximum number of bytes we can read from
the file.

With the first bug, I was able to dump all files under the webroot and gain an understanding of
the bigger picture, as follows:

1. When we register an account, our username is concatenated with its half MD5 hash,
which is really our username ID (UID). It is delimited by the byte "\x80". This string is
then base64 encoded and used as our cookie. Our cookie is also inserted into a
database that start.php will check for, so we cannot spoof an arbitrary cookie.

2. The "secret" used as the exe's 1st argument is generated by encrypting using our UID, a
private key and the dogekey. The private key and dogekey cannot be leaked using our
arbitrary file read to my knowledge as it resides in the registry. The 3rd argument will be
our UID itself.

3. decrypt-flag.php simply where we get our real flag using the dogekey

The cryptography component in encrypt.php was easily recognisable as RC4, from its telltale
code pattern of swapping array values. However, here, it uses a small modulo of 16 instead of
256. Instead of working with bytes, we are working with nibbles, or half bytes. Our UID is added
to the private key and it is used to encrypt the dogekey.

One issue remains however. To mount any form of meaningful attack against RC4, we should
have greater control over our UID. With a UID generated by MD5, the difficulty of controlling
more digits in our UID increases exponentially. From testing, fixing its first 5 digits takes around
less than a minute, and any more digits from that point would be just like doing an impossible
proof-of-work problem.

Bug 2

If we could inject a '\x80' into our username, we can smuggle in our own UID. However, the
preg_match filter in index.php filters out the byte '\x80'. I then went and understood the
meaning of the filter, namely what N, Z, L and M meant.

From this site (https://www.regular-expressions.info/unicode.html), I learnt that \p{M} meant that
I can use things such as umlauts in my username. As I do not have a foreign language background,
I learnt from Google that that would mean I could use characters with accents. As it turns out, I can
smuggle in '\x80' with this approach:

This is proven to be correct from the following screen. By registering with a username of Àa, my
UID became only 'a', which is 15 bytes shorter than what the encryption function needs, hence
the error.

https://www.regular-expressions.info/unicode.html

Now, we can encrypt dogekey with any UID of our choice. However, we still need a method of
reading it out. Recall from before that this requires the accumulation of numbers from the python
parsing of our input to equate to the last 4 digits of our UID, as well as one of our inputs hashing
to match the UID. The second condition is in fact redundant. Once we satisfy the first condition,
the encrypted dogekey is written to a known location on disk, and we can reuse our arbitrary file
read to read it.

The python parser is shown to be as follows. It was immediately obvious that the modules it
imports were merely python files in the same directory and not the actual well-known modules.
(Slightly modified in screenshot)

By downloading all the needed python files, I was able to get the same output number as the
remote server. By brute force, I came up with a list of possible input to generate all possible
different numbers from the parser.

One thing of note is that the maximum input length is actually constrained to 0x30 - 6 bytes, as
any longer will fail a check in place by the program. Now, we have everything in place to attack
RC4. The following procedure summarises how to get the encrypted dogekey for any UID.

Encryption Procedure
1. If the last 4 digits of the UID do not matter, we can pick any string such as

"zuxmxgczgkaxhhdaicpuwjexgdqeljcaxgyanxiy", which will give 69. We just have to set
the last 4 digits of the UID to match 0xd06e + 69 = 0xd0b3. We then send the string and
we can use the arbitrary file read to get the encrypted dogekey

2. If the last 4 digits do matter, then this reduces to the common dynamic programming task
of change making. With the DP algorithm, we can determine the smallest possible list of
strings that will be added to 0xd06e to form the 4 digits we need. If we cannot find one,
or if the 4 digits are smaller than 0xd06e, we simply add 0x10000 to their difference and
retry.

Now, we have what it takes to launch an attack against the RC4 encryption. I have considered
using the attack outlined here
(https://gist.github.com/szabolor/a5e2d79dc926d352da528cab0b3e3136), which uses modulo
32 instead. Roo's observed bias should be able to give us the first 3 bytes of the key. However,
it quickly breaks down from here for a few reasons:

1. The attack is statistical and hence requires a very large sample size of ciphertexts (1000
per digit). We do not have the luxury of this as the encryption procedure can take up to
30s per encryption.

2. The 0ctf challenge gives the raw PRGA output, which makes the attack leaking bytes
3-15 possible.

Other attacks including the FMS attack all have requirements we don't satisfy, such as knowing
the first 3 bytes of the key, or knowing the first byte of the plaintext. The attacks may be possible
but I did not choose to use them.

Instead, I considered this line of reasoning: since the KSA uses addition to determine the swap
positions (i.e. j := (j + S[i] + key[i mod keylength]) mod 16), and we control what is
added to the key, we should be looking at some related key attack based on addition. Entering a
similar term into Google (i.e. "addition delta related key attack rc4") shows us a paper as the first
result, which contains a viable attack
(https://www.researchgate.net/publication/220848458_A_New_Practical_Key_Recovery_Attack
_on_the_Stream_Cipher_RC4_under_Related-Key_Model). I will be using the attack outlined in
section 3.1, except we are attacking a full length 16 nibble key.

For every 2 digits in the key, we first choose a candidate "differential" to add to it (e.g. 0 and 0, 0
and 1 all the way up to 15 and 15). We call this the first key, or key 1. We then create a
differential that slightly differs from key 1 using the following pattern. We leave the remaining of
the two keys the exact same, and it can be any value.

https://gist.github.com/szabolor/a5e2d79dc926d352da528cab0b3e3136
https://www.researchgate.net/publication/220848458_A_New_Practical_Key_Recovery_Attack_on_the_Stream_Cipher_RC4_under_Related-Key_Model
https://www.researchgate.net/publication/220848458_A_New_Practical_Key_Recovery_Attack_on_the_Stream_Cipher_RC4_under_Related-Key_Model

We then encrypt the plaintext using the pair of keys respectively. There will only be one pair of
correct differential values that creates the following swapping pattern in the KSA:

Key 1 Key 2

swap(s[0], s[0]) swap(s[0], s[1])

swap(s[1], s[1]) swap(s[1], s[0])

… Same from here as the keys are the same…

As can be seen, even though key 1 and key 2 caused different swapping operations, their
effects on the final RC4 state after the KSA are effectively the same, which would present as a
collision, where the ciphertexts are the same.

With this method, we brute force the correct differential values to get a collision for every 2 digits
in the key, and then calculate the key from the differentials, which is included in test.php of the
files I will provide. This approach only requires at worst (16 / 2) * (16^2) = 2048 attempts, which
is extremely reasonable.

I do not have a screenshot of my script running as I ran it on a temporary AWS Singapore
server. Here is a screenshot showing a snippet of its runtime, recovering the first two key digits:

Here are the values I got:

Private key: c390c2bac4a3c690
Encrypted dogekey with 0 delta: 9e51eafb37f35cd7b8ada161c19e875c
Dogekey: 600d715cf1a6baadd06e10000d011a55

Plugging the dogekey into decrypt-flag.php gets us the flag:

Flag: TISC{5UCH_@I_V3RY_IF_3153_W0W}

