
Level 1 – Slay the dragon

Intro
Level 1 is a python challenge that consists of a game client and server architecture. The challenge requires

the player to defeat all the bosses, but it is actually impossible to win the game normally. The bosses at

later stages hit like a truck, and the last boss (dragon) one hits the player.

Damage calculation
Since both the server and the client’s source code were given, it is trivial to find the code that handles

damage calculation. Looking at the client’s code, when an attack is performed on the boss, the function

__attack_boss in battleevent.py is called.

This function sends an ATTACK command to the server, and the server processes this command in

battleservice.py. Notably, the server receives the command as a string, and this string is processed by

history.log_commands_from_str.

The outcome of the battle is computed in the __compute_battle_outcome function. Taking a look at the

function reveals that the commands are saved into a list and iterated.

If Command.ATTACK is found in the list, the boss receives the damage from the player, and the code

checks if the boss is dead. If the boss is dead, the player receives a Result.PLAYER_WIN_BATTLE.

One last thing to check is to understand how the server processes the command string into a command

list. As mentioned earlier, this can be found in the history.log_commands_from_str function.

This code simply splits the string by [space], before storing each token into the list.

Winning the Game
When playing the game normally, the attack command is only sent once. This means that the player can

only attack once per turn, and the history.commands list will only contain at most one attack command.

However, as seen from the code, there is support for multiple attack commands in the list. To beat the

game, the player simply has to attack multiple times per turn. This can be done by modifying the client to

send multiple attack commands to the server in one go.

In addition, to make sure that no damage calculation is done on the client side, the player’s base attack

stat is modified by modifying config.py.

Level 2 – Leaky Matrices

Intro
Level 2 is a cryptography challenge that requires the player to fool an authentication service implemented

by PALINDROME. The challenge also provided a whitepaper that shows the implementation of the

authentication scheme.

2 Way Key Verify
In the white paper, 2 Way Key Verify or 2WKV is stated a key verification algorithm that allows the user

to “verify the knowledge of the key without revealing the key to the other party”. The implementation of

said algorithm is a matrix multiplication in GF(2) as “proof of knowledge”.

The server allows the user to send a series of challenges to the server to authenticate the server, after

which the server will send a series of challenges back to the user.

Problematic Algorithm
Information about the secret key can be leaked by providing challenge matrices with the value (1) in each

row. For example, take secret = [
1 2
3 4

] and challenge1 = [
1
0

] and challenge2 = [
0
1

]

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 1 𝑟𝑒𝑠𝑢𝑙𝑡 → [
1 2
3 4

] × [
1
0

] = [
1 ∗ 1 2 ∗ 0
3 ∗ 1 4 ∗ 0

] = [
1
3

]

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 2 𝑟𝑒𝑠𝑢𝑙𝑡 → [
1 2
3 4

] × [
0
1

] = [
1 ∗ 0 2 ∗ 1
3 ∗ 0 4 ∗ 1

] = [
2
4

]

Notice that by sending the challenge matrices in such a way, it is possible to recover the original secret

key. By constructing the challenge matrices in this way, the identity matrix is formed.

𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 𝑠𝑖𝑧𝑒 2 × 2 = 𝐼2 = [
1 0
0 1

]

However, according to the whitepaper, the algorithm uses matrix multiplication in GF(2). This means that

the result is always 1 or 0. Using the same secret key and challenge matrices, the result of the challenge

will be:

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 1 𝑟𝑒𝑠𝑢𝑙𝑡 → [
1 2
3 4

] × [
1
0

] = [
1 ∗ 1 2 ∗ 0
3 ∗ 1 4 ∗ 0

] = [
1
3

] = [
1
1

] 𝑖𝑛 𝐺𝐹(2)

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 2 𝑟𝑒𝑠𝑢𝑙𝑡 → [
1 2
3 4

] × [
0
1

] = [
1 ∗ 0 2 ∗ 1
3 ∗ 0 4 ∗ 1

] = [
2
4

] = [
0
0

] 𝑖𝑛 𝐺𝐹(2)

Instead of getting the exact value of the secret key, it is only possible to know whether the value is odd or

even. This is however sufficient as verification of the secret key is also done in GF(2), meaning the server

essentially only tests if the answer is 1 or 0 (odd or even).

Breaking the Authentication
Send 8 challenge matrices in the following order (identity matrix of 8x8) to reveal the parity of the values

in the secret key (parity secret key):

1. 10000000

2. 01000000

3. 00100000

4. 00010000

5. 00001000

6. 00000100

7. 00000010

8. 00000001

Perform matrix multiplication between the parity secret key and the challenges provided by the server.

Level 3

Intro
Part 1 of the challenge requires the player to uncover the 8 corrupted bytes that rendered the file system

unusable. Whereas part 2 is a continuation of the challenge but requires a bit of forensics to uncover the

flag hidden within the file system.

Part 1
This part is rather simple as it only requires a simple understanding of the NTFS file system. By looking at

the NTFS partition boot sector format, it can be seen that the 8 corrupted bytes lie within offset 0x20 to

0x28 of the file. According to the format specification, these bytes are not used by NTFS, but the default

values are 0x0 and 0x80008000 respectively. In the file provided by the challenge, the bytes have been

replaced:

Since the challenge required the flag submission to be in the format of TISC{last 4 bytes in 8 lowercase

hex characters}, the resultant flag is TISC{f76635ab}.

Part 2 – Autopsy Rabbit Hole
Given the information that the 4 corrupted bytes in part 1 is actually one of palindrome’s passwords, find

the hidden flag in the form of an md5 hash. Processing the file in Autopsy, the following files can be

retrieved:

 Broken.pdf

 Message.png

The pdf provides the first clue to this rabbit hole. The message is a direct reference to the task in part 1.

The next clue can be found in message.png.

Just by looking at the message, it is easy to spot that it is encoded by some sort binary to text encoding

scheme such as base64. After experimenting with the text in Cyber chef, the message decodes to the

following in base32.

This clue points out that message.png has an alternate data stream.

This reveals the third clue, which is the message “3. Are these True random bytes for Cryptology?” With

some hints from TISC, this clue actually refers to the program TrueCrypt (notice the capitalized words in

the clue). The fourth clue can be found in the same stream, and using the same logic as above, it seems

to allude to the fact that the corrupted bytes found in the BPB portion of the file (in part 1) is the CRC32

value of a password.

Part 2 – TrueCrypt
According to Wikipedia, TrueCrypt is a discontinued source-available freeware utility that provides on-

the-fly encryption. It can also create a virtual encrypted disk within a file, or encrypt a partition or the

whole storage device. Using the third clue given in the data stream of message.png, the encrypted bytes

were extracted into a file. The TrueCrypt program is then used to mount the file, and this revealed the

“outer door”.

Outer.jpg mentions about the condition of hash collisions, where multiple keys end up with the same

checksum result. However, the word collision did not work as the password for the encrypted volume.

Correlating the fourth clue and the leet text in outer.jpg, it seems that the challenge required the player

to iterate all possible leet speak combinations of the word “collision” to obtain the correct password. The

password is: c01lis1on.

Using the new password to mount the file, flag.ppsm is found in the virtual drive. Opening the file in

Microsoft office, revealed that the flag is the md5 hash of the embedded mp3 file. Simply unzip the file,

find the mp3 file and perform an md5 hash on the file to obtain the flag:

TISC{f9fc54d767edc937fc24f7827bf91cfe}

Level 4A

Intro
This level provides the player with an unknown file. The player is required to perform some forensics on

the file to understand its capabilities, and obtain the flag from said file.

Simple Forensics
Using the file and strings commands on the provided file revealed the following:

 The provided file is a ELF64-bit file with debug symbols,

 The file might be a Linux kernel netfilter module

 The module is compiled for Linux kernel 5.13.0-40

Simple Reverse Engineering
During initialization, the module registers a netfilter hook. The handler netfilter_hook_func is installed to

intercept all incoming PF_INET packets.

Although the handler intercepts all incoming PF_INET packet, the handler is only interested in ICMP

packets.

The handler strips away the ICMP header and is only interested in the data section. The data section is

only 2 bytes long, as shown in the pseudocode.

An MD5 hash is computed on the ICMP packet data, and the hash is converted from binary to string. After

conversion, the string is compared to 5 hashes hardcoded in the module.

The hardcoded hashes are found to be mapped to the following data via rainbow table search online.

MD5 Data

852301e1234000e61546c131345e8b8a 1q

ec9cbcbeaf6327c7d0b9f89df3df9423 2w

8aee1f7493a36660dd398cc005777f37 3e

01e26c52317ea6003c5097aa0666ba22 4r

5526021d73a11a9d0775f47f7e4754c4 5t

When each hash is matched, a Boolean value is set to true. When all five hashes are matched correctly,

the all_hashes_checked function will decrypt the flag and print it in dmesg.

The flag seems to be encrypted with both xts(aes) algorithm and xtea algorithm. However, it is not really

important to understand the algorithm used as it is easier to dynamically retrieve the flag by running the

module.

Installing the Correct Linux Kernel
From the strings of the module, the kernel version required to run this module can be found. The exact

version required is 5.13.0-40-generic, and thus the following command was used to install the kernel

version.

After installation, reboot to grub and choose to run the kernel from the grub menu. This can be done on

VMware by holding on to the Escape button while the virtual machine is booting up.

Installing the Module
Run insmod to install and run the module. Use dmesg to ensure that the module is running.

Performing the Port Knock
Use nping and the following commands to send the specific ICMP packets to the host machine that is

running the netfilter module.

 sudo nping --icmp --data-string 1q 127.0.0.1 -c 1

 sudo nping --icmp --data-string 2w 127.0.0.1 -c 1

 sudo nping --icmp --data-string 3e 127.0.0.1 -c 1

 sudo nping --icmp --data-string 4r 127.0.0.1 -c 1

 sudo nping --icmp --data-string 5t 127.0.0.1 -c 1

Send multiple times if the flag does not show up in the dmesg.

Level 5A

Intro
In this challenge, a binary that constantly changes itself after execution is provided. During analysis, it was

found that the binary contains anti-disassembly tricks, and junk code in the program. After removing the

junk code and obfuscations, the program is left with a XTEA algorithm that requires reconstruction of the

key to obtain the encrypted flag.

Running the Program

When running the program, it displays a banner and an md5 hash before crashing. The md5 hash

displayed matches the hash of the original program. After the program is run, the md5 of the program

changes, hinting polymorphic properties in the program.

Reverse Engineering
Loading the program into IDA pro and searching for the error message resulted in the following structure.

Finding cross references to the structure led to an error function (core::result::Result…::unwrap), which

is ultimately called by morbius::main.

Within morbius::main function, various junk code sections exist. The highlighted line at address 0x164C0

shows the junk code section right after the call from core::result::Result…::unwrap. As one can see, the

instructions from 0x164C0 to 0x164D1 does absolutely nothing, as the original value of register RSI was

saved at the very start, and restored at the end of the code chunk. This meant that all instructions in

between the start and the end which modified register RSI had no lasting effect.

Since the program crashed at this location, the point of interest was to find out what happens if the

program did not crash. The next step was to clean up the junk code in the function and look at the

alternate code flow.

Notice that after crash site, there is code that calls into the value register RBX, likely executing a shellcode.

The pseudocode below is shown for more clarity.

Extracting the Shellcode

To extract the shellcode, run gdb and place a breakpoint on the call to core::result::Result…::unwrap

(crash site). Once the program breaks, dump the data at scratch_area, the source variable for memmove.

In disassembly, scratch_area is located at RSP + 0x8F0.

Analyzing the Shellcode

Although the above dumped 0x1000 bytes of code to the file mydump, the actual size of the shellcode is

only 0x5AC, as evident in the arguments to memmove. The code starts by printing various messages such

as a banner before reading a string of 50 characters from the user. The user input is then xor’d with 0x2F,

and compared to some encrypted bytes stored on the stack.

Since xor is self inverse, taking the encrypted bytes and xoring it with 0x2F reveals the string

“TISC{th1s_1s_n0t_th3_ac7u4l_fl4g_lM40}”. However this is only 38 characters. According to the

arguments to read, there are still 12 more characters (50 – 38) that are not known. The shellcode proceeds

to perform some manipulation on the user’s input. To form a four 4 bytes value. This value is then passed

with another encrypted string to another function. The manipulations are shown below:

value[0] = (input[46] << 8) | input[15] // input[46] is unknown as explained above

value[1] = (0x64 << 8) | input[13]

value[2] = (0x4a << 8) | input[46] // input[46] is unknown

value[3] = (input[40] << 8) | 0x32 // input[40] is also unknown

The function called by the code above is displayed incorrectly in the disassembler. This is due to some

control flow obfuscation.

However, fixing this is a rather simple task of following the code flow and removing redundant code. For

example, in the code above, the “jmp short near ptr loc_3D2+2” instruction is disrupting the

disassembler’s output. To fix this, simply undefine the instructions around 0x3D4 (0x3D2+2) and define

the code at 0x3D4. After which, replace the code in between with no-ops.

After repeating the steps for the rest of the anti-disassembly, the obfuscated function was revealed to be

XTEA’s decryption function.

Decrypting the Data

After knowing the function is XTEA, it is trivial to iterate the possible values for the unknowns in the key

to decrypt the encrypted data. The total unknowns are 2 bytes, input[40] and input[46] respectively. After

iterating all possible values for those inputs and generating the keys for XTEA decryption, the flag is

revealed to be TISC{P0lyM0rph15m_r3m1nd5_m3_0f_M0rb1us_7359430}.

Level 6 – Pwnlindrome

Intro
Level 6 provides a program that contains various vulnerabilities that required some reverse engineering

to understand them. Successful exploitation of these vulnerabilities will allow the player to perform read,

write, and code execution on the server.

Reverse Engineering

Welcome Banner

At the start of the program, a welcome banner and a menu is displayed. This can be seen in the

pseudocode of the program.

After print_menu, the allocate_memory_spaces function allocates two memory spaces of 0x1000 size

each.

As these memory spaces (memarea_1 and 2) are allocated right after each other, they are likely to be

allocated side by side in memory. This can be confirmed in gdb.

As seen in the picture above, the allocated addresses for memarea_1 and memarea_2 are 0x1010 or 4112

bytes apart (0x5612C97924B0 - 0x5612C97914A0).

Option Selection
By entering the numbers 1 to 3, the program will execute the functions lvl1 to lvl3 respectively.

Level 1

In level 1, the program requests for a seed value.

The program then asks for 16 allocations.

This seed value entered is used to seed a pseudorandom function. For each allocation iteration, the

pseudorandom function generates a value, which is used to calculate an offset. These offsets are then

used in conjunction with memarea_1 to store 16 integer inputs provided by the user.

The pseudocode can be simplified to the following equation. Note that i is the iteration count.

𝑚𝑒𝑚𝑎𝑟𝑒𝑎1[𝑟𝑎𝑛𝑑() + 𝑖 ≪ 8 + 0𝑥𝐹7] = 𝑢𝑠𝑒𝑟_𝑖𝑛𝑝𝑢𝑡𝑖

Vulnerability

It may be immediately obvious that the function does not check if the calculated offset is within the

bounds of memarea_1. If the offset is larger than 0x1000, an out of bounds write will occur. An example

of said issue is shown below.

𝑙𝑒𝑡 𝑖 = 15, 𝑟𝑎𝑛𝑑() = 10

𝑚𝑒𝑚𝑎𝑟𝑒𝑎1[𝑟𝑎𝑛𝑑() + 𝑖 ≪ 8 + 0𝑥𝐹7] = 𝑢𝑠𝑒𝑟_𝑖𝑛𝑝𝑢𝑡_1

𝑚𝑒𝑚𝑎𝑟𝑒𝑎1[10 + 15 ≪ 8 + 0𝑥𝐹7] = 𝑢𝑠𝑒𝑟_𝑖𝑛𝑝𝑢𝑡_1

𝑚𝑒𝑚𝑎𝑟𝑒𝑎1[0𝑥1001] = 𝑢𝑠𝑒𝑟_𝑖𝑛𝑝𝑢𝑡_1

Using the values shown in the example, the user is able to write one byte outside of the bounds of

memarea_1.

Level 2

Menu

In level 2, the program shows a different menu that provides options to add, modify, delete, and read a

node.

The function lvl2 is the handler for this menu, and its pseudocode is shown below.

Initializing Memarea_3 and Root Node

Before the menu is displayed, a large memory space of size 0x10000 is first allocated. As this is the third

memory space allocated by the program, it will be referred to as memarea_3.

After memarea_3 is allocated, the root node is initialized.

Notice that memarea_3 is used to store root node’s data.

Add Node

When add node is selected, the user is asked to enter an input length of maximum 0x1000 (4096). This

number is used as the length of the node’s data. Using this length value, the function proceeds to pick the

suitable allocation bin for the data.

From get_allocation_bin, the memarea_3 space can be seen to follow this structure:

Size (bytes) 0x10 0x160 0x520 0x1420 0x2820 0xA020 0x1D10

Data Root
node
data

0x10
sized
bins +
header

0x40 sized
bins +
header

0x100 sized
bins +
header

0x400 sized
bins +
header

0x1000
sized bins +
header

unused

After the root data, the bins of increasing sizes are located sequentially in memarea_3. There are a

different number of bins for each bin size, and the breakdown is shown below.

Bucket No Bin Size No of bins

1 16 bytes 20

2 64 bytes 20

3 256 bytes 20

4 1024 bytes 10

5 4096 bytes 10

The first 16 bytes of each bucket is the metadata header. However, only the first 8 bytes is important as

they contain a pointer to the number of allocated bins for the bucket.

This address is located in the program’s .BSS region.

After the allocation bin is chosen, a node is allocated and its data length and data address is populated.

The allocated node is then added to a node list.

Next, the user is asked to enter the data for the node. The program will only copy the number of bytes

based on the user’s initial input for the node’s length. This data is stored into the allocated bin.

Modify Node

The program requests for the node index the user wishes to modify.

The index is used to retrieve the node from the node list in select_node. The user is then asked to input

the length of the data (maximum 4096 bytes). The program then reads the input data from the user and

stores the data into the selected node.

Vulnerability

Although the input length must be between 1 and 4095, the function does not check if the length is

bounded within the node’s data size. This is a typical buffer overflow bug.

Read Node

The program requests for the node index to read from, and simply outputs the data from node->data.

As the data is treated as a string, the read will not stop until a NULL byte is found in the data.

Level 3

The user attempting to access level 3 without clearing some conditions in level 1 will be greeted with the

following message.

Looking at the handler function for level3, it only continues executing if the first byte in memarea_2 passes

the check_condition function.

In check_condition, the function checks if the first byte of memarea_2 is an even number that is bigger

than 10. If it is, the function makes sure that the value is a Fibonacci number.

Clearing the Condition

Via the use of the program, memarea_2 is actually never modified. None of the levels, 1-3, allow any sort

of modification to memarea_2. The vulnerability in level 1 is required to write a byte into memarea_2 and

clear the condition.

The condition set by level 3 requires the first byte in memarea_2 to be an even Fibonacci number that is

bigger than 10. The smallest Fibonacci number that fits all the criteria is 34.

Next, the generated offset from level 1 needs to be 4112 as this is the difference between the addresses

of memarea_1 and memarea_2. A seed value of 180 generates the following offsets from the algorithm

used in level 1:

305 590 872 1203 1339 1770 2010 2074 2297 2621 2924 3111 3569 3742 4080 4112

Notice that the 16th value is exactly what is needed for the requirement. After entering the seed of 180

and entering 34 for each input, the first byte of memory_area2 is now 34, fulfilling the requirement.

The Message

Once the conditions are met, the program requests for a user message to be left behind.

The message must not be more than 40 characters long, otherwise it will be rejected.

Perhaps to ensure that there is sufficient space to store the message, the function allocates a total of 0x60

(96) bytes on the stack although the message is only at most 40 bytes long.

After the message is stored onto the stack, the message goes through some modifications in the xor_msg

function.

The first byte in memarea_2 is 0x21 (34) because of the check_condition earlier. As such, the message

bytes go through the following modification.

𝑚𝑠𝑔[𝑖] = (𝑚𝑠𝑔[𝑖] + 0𝑥21) ^ 0𝑥21

Next, the function checks if msg[64 to 72] contains any value. If it does, the function dereferences the

value and jumps to it.

This is usually not possible because the message length is only 40 bytes long. The check on the message

length has to be bypassed so that a message longer than 40 bytes can be written to the stack.

Vulnerability

To bypass the check, the user simply has to enter a negative value for the message length. This is because

the check only ensures that the message length does not overshot 40, but does not check if it is negative.

To write a 72 bytes long message, the user can enter the length: -65464. This is 0xFFFF0048 in DWORD

hexadecimal. After passing the length check, the function proceeds to truncate the upper two bytes of

the value.

After truncation, only 0x0048 remains, and this is 72 in decimal. This will cause the function to copy 72

bytes of data from the user’s input and trigger a jump to any address the user wishes to go to.

Getting the Flag
The general steps to obtain the flag are:

 Use level 1 to bypass the checks in level 3,

 Write an address in the message and force level 3 to jump to that address

What Address to Jump to?

Since level 3 allows the user to jump to any desired address, what address is most useful to obtain the

flag? A simple strings search in the program revealed the get_flag function.

This function is interesting as it is not used by any other functions, and its functionality is to read and

output the contents of a file (likely the flag). In the disassembler, this function lies in offset 0x3E40 but the

virtual base address is not known.

Leaking the Base Address

Revisiting level 2, it is known that each bin bucket comes with a metadata header that contains a .BSS

address in the first 8 bytes. It becomes possible to leak the value if the user overflows a node’s data till it

reaches the next bin’s bucket metadata header. The user can then use the read node functionality to leak

the BSS address.

Node 1 contents Bucket 2 Metadata Header

AAAAAAAAAAAAAAAAA……..AAAAAAAAAAAAAAAAAAAAAAAA Bucket 2 Num Allocation BSS Address

The exact steps to achieve this are:

1. Create a node of size 15 and below

2. Modify the node’s length and data

a. Length at least 336

b. Data all As

3. Create a new node of size between 16 to 64

a. This stores the BSS address into bucket 2’s metadata header

4. Read node 1’s contents

As mentioned earlier, since the contents are treated as a string, the program will continue reading all the

bytes until a NULL byte is found. This leaks the BSS address of bucket 2, which are displayed as the weird

characters in the picture above. The value in this case is 0x55ABE66E641C.

Since bucket 2’s BSS offset is known, the base address can be calculated by subtracting the offset from

the leaked value: 0x55ABE66E641C – 0x841C = 0x55ABE66DE000. Now add the base address to get_flag

to obtain the virtual address of 0x55ABE66E1E40.

Calling get_flag

In level 3, after passing check_condition, enter a message of length 72 to trigger the arbitrary function

call. To achieve a message write of more than 40 bytes, a negative value has to be provided. To get exactly

72 bytes, enter -65464. The last 8 bytes of the message must contain the virtual address of get_flag so

that the function is executed by level 3. One last thing to bypass is the xor_msg function. As the message

bytes are modified by the function, the virtual address of get_flag will turn into something invalid if left

as is. Fortunately, it is sufficient to perform the inverse of the function on the virtual address so that

xor_msg reverses the bytes back into the valid virtual address.

𝑚𝑠𝑔[64. .72] = ((𝑚𝑠𝑔[64. .72] ^ 0𝑥21) − 0𝑥21) & 0𝑥𝐹𝐹

The flag displayed by get_flag is: TISC{ov3rFL0w_4T_1Ts_fIn3sT}

Level 7 – Challendar

Intro
Level 7 presents a challenge where a server is running two different HTTP services that serve content from

the same folder and path. Each HTTP service provides different sets of HTTP methods, and via the use of

one service, trigger a vulnerability in the second to obtain RCE.

Simple Forensics
For this level, a zip file named backup.zip was provided. The zip file contained various files that looked to

be a Mozilla profile. Some of the files came with the mozlz4 extension, and a quick google search revealed

that this file extension is only utilized by Mozilla.

Within all the files located within the zip, the one file that stood out the most is the logins.json file. An

excerpt of the file content is shown below.

"logins": [
 {
 "id": 2,
 "hostname": "http://chal02w3tgq6sy7hakz4q9oywcevzb7v6j1jpv.ctf.sg:37179",
 …
 "encryptedUsername":
"MDIEEPgAAAAAAAAAAAAAAAAAAAEwFAYIKoZIhvcNAwcECPAfMIrbRbDDBAiEaB/Ff9KJcw==",
 "encryptedPassword":
"MDoEEPgAAAAAAAAAAAAAAAAAAAEwFAYIKoZIhvcNAwcECBU2xrvqgAiXBBAuY5LAsY4DzzgJhv0n6Y
OW",
 } …
}

The table below shows the contents extracted from the file.

Field Contents

Server http://chal02w3tgq6sy7hakz4q9oywcevzb7v6j1jpv.ctf.sg

Ports 35128 and 37179

Encrypted Username MDIEEPgAAAAAAAAAAAAAAAAAAAEwFAYIKoZIhvcNAwcECPAfMIrbRbDDBAi

EaB/Ff9KJcw==

Encrypted Password MDoEEPgAAAAAAAAAAAAAAAAAAAEwFAYIKoZIhvcNAwcECBU2xrvqgAiXBBA

uY5LAsY4DzzgJhv0n6YOW

Although the username and password seemed to be stored within the file, the base64 strings did not

decrypt into anything readable.

Attempting to visit the server at port 35128 required login details.

Whereas requests to port 37179 got redirected to a default page at /radicale/.web.

Decoding the Login Details
With some help from Google, it was found that the login details can be decrypted as long as the matching

key4.db and perhaps cert9.db is provided. Fortunately, since the backup profile contained the

aforementioned files, it became trivial to decode the details as tools such as firefox_decrypt exists.

https://github.com/unode/firefox_decrypt

Signing In
Using the credentials obtained on the login prompt from port 35128 resulted in the following message

from the server.

https://github.com/unode/firefox_decrypt

The radicale server on port 37179 did not provide any obvious way to login with the credentials obtained.

Code Review on Go Source Code
Apart from backup.zip, a go source code is also provided for this level. Looking at the source code, the

following message seemed familiar.

Assuming that the server running at port 35128 is actually this piece of go code, the functions

“bcrypt.CompareHashAndPassword” and “checkIsAuthorized” must pass, in order to skip over the HTTP

error message.

CompareHashAndPassword
This function is a GO function provided in the golang.org/x/crypto/bcrypt package. This function checks

if the hash retrieved from an htpasswd file and the password provided by the user matched. This function

likely passed if the login credentials entered above was valid.

CheckIsAuthorized

From the source code, CheckIsAuthorized first retrieves the username field from the HTTP Authorization

Header. Next, the function splits the requested path by the “/” token. Finally the function ensures that

the username retrieved is extant in the 2nd token, and the total number of tokens after the split is no more

than 4. For example, if the URL request was /jrarj/abc/def/ghi, the split will result in the following tokens:

1. <empty>

2. jrarj

3. abc

4. def

5. ghi

In this case, even if the username provided for the login is also jrarj, the function will fail as the total

number of tokens is 5. Armed with the knowledge, logging in with credentials above and attempting to

access the path at /jrarj/abc/def at port 35128 resulted in the following message.

Receiving this message showed that the login was successful, but the requested path was not found on

the go server. Consulting the source code again showed that some HTTP methods are blocked explicitly

in the code, but nothing was revealed about the folder structure being served.

Allowed HTTP Methods
Returning to the source code, after the HTTP methods are filtered, the HTTP request is passed to the

ServeHTTP function. This function is found in golang’s WebDAV source code (golang.org/x/net/webdav/

package). In this function, various HTTP methods are supported. The image below shows the complete

set of supported HTTP methods supported with the ones that have not been denied highlighted in yellow.

OPTIONS

This HTTP method simply displays the supported HTTP methods on the path, and did not seem interesting.

The relevant parts in the options handler function is shown below.

GET/POST/HEAD

The HTTP methods GET, POST and HEAD use the same function in the WebDAV package. This function is

used to retrieve the files in the WebDAV folder, provided that the file exists. The file path is retrieved from

the URI in request. The code did not seem to check whether the user had access to the file requested.

DELETE

The DELETE method removes a file from the WebDAV filesystem, provided that the file exists. Again, the

URI is used as the path to the file targeted for deletion, and like GET/POST/HEAD methods, no permission

checks were done.

PUT

The PUT method allows the user to upload a file into the WebDAV filesystem. Like previous methods, the

URI is used as the file path in the WebDAV filesystem. The function copies the content from the HTTP

request’s body into the newly created file. Again, no permission checks are performed.

MOVE/COPY

Both MOVE and COPY methods reach the same function handler in the WebDAV source code. For these

methods, the function accepts another HTTP header named Destination. This HTTP header stores the

MOVE or COPY destination of the file, while the URI is used as the source. Again no permission checks are

performed on either paths.

Note that while limitations exist on the HTTP request PATH, no checks are performed on the Destination

HTTP header. This means that anyone with login privileges to the go server can upload a file using the PUT

method, and MOVE/COPY the file into any location (provided the path exists). An example exploiting this

vulnerability is shown below.

curl -i -u jrarj:H3110fr13nD -T payload

http://chal02w3tgq6sy7hakz4q9oywcevzb7v6j1jpv.ctf.sg:35128/jrarj/payload

curl -i -u jrarj:H3110fr13nD -X MOVE --header "Destination:/../../anywhere/payload”

http://chal02w3tgq6sy7hakz4q9oywcevzb7v6j1jpv.ctf.sg:35128/jrarj/payload

LOCK/UNLOCK

These HTTP methods are used solely for holding write/read locks on the files in the WebDAV filesystem

and are not relevant or important.

Exploring the Radicale Server
In the go server source code, there are comments and strings that make references to radicale.

The comment mentioned that are existing Radicale files on the WebDAV filesystem, and the go server is

supposed to be the replacement for Radicale. Since the path /jrarj/ is known to exist on the WebDAV

directory from earlier testing and review via the go server, the same path is tested on the Radicale server

at port 37179. However, visiting http://chal02w3tgq6sy7hakz4q9oywcevzb7v6j1jpv.ctf.sg:37179/jrarj/

still led to a redirection to /radicale/.web as shown below.

Trying to access the /radicale/ path resulted in no redirection but another error message.

A quick search on google shows that Radicale is a CALDAV server that supports a variety of CALDAV and

WebDAV HTTP methods. To know which methods are supported by the server, an OPTIONS HTTP request

was sent to the server.

As seen from the image, the server supports many methods including the disallowed methods on the go

server. However, even though OPTIONS lists GET as an allowed method, the server clearly returned a

“Method temporarily disabled during development” message, suggesting GET is denied on the backend.

Tests on the server revealed that the following:

Seen above, most methods are either not allowed or forbidden. The MKCOL, PROPFIND and REPORT

methods return unauthorized instead, and requests for a password via HTTP basic authentication. The

same requests are then made again with the credentials obtained from the Mozilla profile. With the login,

only MKCOL, PROPFIND and REPORT returned differing results.

Method Status Result

DELETE 403 Forbidden Read-only access during development

MKCALENDAR

MOVE

POST

PUT

HEAD 302 Found Redirected to /radicale/.web

MKCOL 401 Unauthorized Access to the requested resource forbidden
WWW-Authenticate: Basic realm=”Radicale – Password
Required”

PROPFIND

REPORT

OPTIONS 200 OK Shows allowed HTTP methods

GET 405 Not Allowed Method temporarily disabled during development

PROPPATCH

The results from PROPFIND and REPORT are shown below:

PROPFIND
PROPFIND is a WEBDAV HTTP method that can be used to find file properties. This method can also be

used to obtain directory listing. Beautifying the XML content from PROPFIND, the important details are

shown below.

<?xml version='1.0' encoding='utf-8'?>

<multistatus xmlns="DAV:">

 <response>

 <href>/radicale/</href>

 <propstat>

 <prop>

 …

 <current-user-principal>

 <href>/radicale/jrarj/</href>

 </current-user-principal>

…

Method Status Result

MKCOL 403 Forbidden Access to the requested resource forbidden

PROPFIND 207 Multi-Status Folder structure in the XML body content

REPORT 207 Multi-Status XML body content

In the XML body, there is a href to /radicale/jrarj/. Using PROPFIND on that path resulted in another XML

content with no new hrefs.

According to the WebDAV RFC, the PROPFIND method supports directory listing when the DEPTH header

is set to 1. Setting the DEPTH header to 1 and sending another PROPFIND request to /radicale/jrarj/

resulted in a much longer response.

This time, the XML content revealed a new href and some information about the folder. An excerpt of the

contents is shown below.

<response>
 <href>/radicale/jrarj/default/</href>
 …
 <getetag>
 "df525f68979995b87bd460289b8aefe1412d7417241470962091e9ebba7f181d"
 </getetag>
 <getlastmodified>Sat, 17 Sep 2022 05:15:02 GMT</getlastmodified>
 <getcontenttype>text/calendar</getcontenttype>
 <getcontentlength>274</getcontentlength>
 <displayname>jrarj/default</displayname>
 <sync-token>
 http://radicale.org/ns/sync/26983e390820cd01b4349630235070f028154c8eb2ac5e69c5
 339217ddb1cb32
 </sync-token>
 <CS:getctag>
 "df525f68979995b87bd460289b8aefe1412d7417241470962091e9ebba7f181d"</CS:getctag>
 <C:supported-calendar-component-set>
 <C:comp name="VTODO" />
 <C:comp name="VEVENT" />
 <C:comp name="VJOURNAL" />
 </C:supported-calendar-component-set>
…

Again, a PROPFIND request with DEPTH: 1 header was sent to /radicale/jrarj/default/. This time it revealed

that there is a test.ics file in the folder.

…
<response>
 <href>/radicale/jrarj/default/test.ics</href>
 <propstat>
…

Since GET is not allowed on the Radicale server, there is no way to retrieve the contents of test.ics, or is

it?

Using Go Server
From the go source code, both servers are likely to be serving on the same path. The only difference

between the two is the /radicale/ prefix at the start of path. Removing the /radicale/ prefix, a HTTP GET

request was sent to /jrarj/default/test.ics on the go server. Indeed, both servers contained the same path

and the contents of test.ics is revealed.

BEGIN:VCALENDAR

BEGIN:VEVENT

UID:1

DTEND;TZID="Singapore Standard Time":20220529T094500

DTSTART;TZID="Singapore Standard Time":20220530T091500

SUMMARY:Test Event

END:VEVENT

END:VCALENDAR

Unfortunately, the file did not contain any clues to the challenge.

Code Review on Radicale Source Code
Last thing is to take a look at how Radicale is implemented. Radicale is an open sourced CALDAV server

coded in python. The source code is hosted on github at https://github.com/Kozea/Radicale. Radicale

groups each HTTP method handler under its same named python file. For example, the MKCALENDAR

method will have its handler implemented in mkcalendar.py.

Since the number of methods after post authentication have been limited to a handful, auditing of the

source code is scoped down to just a few files:

 mkcol.py

 propfind.py

 report.py

MKCOL.PY
MKCOL is a HTTP method that creates a new collection at the location specified in the URI. The handler

in mkcol.py first checks if the current user has the required permissions to create a collection at the path.

The function rejects the request if the user does not have sufficient permissions to do so.

https://github.com/Kozea/Radicale

Next, the function reads the xml request in the body, and sanitizes the xml.

More permissions are checked, and if everything passes, the function creates the collection in the

WebDAV storage.

Under the hood, a collection is actually represented as folder in the operating system’s filesystem. This is

shown in create_collection, under /storage/multifilesystem/create_collection.py.

PROPFIND.PY
PROPFIND is a method that retrieves properties for a resource identified by the request URI. In its handler

propfind.py, the method first checks for user permissions.

 Depending on the DEPTH header, retrieve the files and folders under the requested URI.

Sanitize the items list so that it is left with the files and folders that the user is able to access.

Retrieve the xml content in the request body, and process it.

The xml_propfind function processes the xml request, and stores the answer to the requested property

in the response body.

REPORT.PY
The REPORT method is a CalDAV method that is used to obtain information about one or more resource.

However, unlike PROPFIND, the REPORT method can involve more complex processing. For example, the

REPORT method can include a time range filter to restrict the set of calendar object resources returned.

Similar to PROPFIND and MKCOL, the handler function in report.py first checks for user permissions before

parsing the xml content in the request body.

The xml content is then processed for the server response in xml_report.

Something Common
While not immediately obvious, all three methods allowed some sort of interaction with the storage

system.

 MKCOL allowed the user to create folders in the storage

 PROPFIND queries for the files in the system and displays their properties

 REPORT queries for the files in the system and may also process the files’ contents

Furthermore, the go server allows the user to upload any file to any location in the WebDAV storage. This

file is not sanitized or checked by Radicale, and perhaps processing its contents will cause an issue. As

such, a closer look at the storage system seemed to be the next thing to do.

Storage
There are many files that implement the code for Radicale’s storage. Not wanting to audit every single

file, it is required to scope down the approach. The two criteria for auditing are:

1. Code is reachable from MKCOL, PROPFIND or REPORT

2. Code contains a file read from the operating system

The table below shows the storage functions called by each handler.

Handler Storage Function

MKCOL acquire_lock
discover
create_collection

PROPFIND get_meta
sync
acquire_lock
discover

REPORT sync
get_multi
get_filtered
acquire_lock
discover

Acquire_lock

The function is used to create a read or write lock on a file or folder. No files are read from the filesystem

in this function.

Discover

The discover function returns a list of file paths that exists under the requested path. Again, no file read

is extant in the function.

Create_collection

This function is used to create a collection/folder in the WebDAV filesystem. This function has already

been audited above and has no file read or load in the code.

Get_meta

This function is used to retrieve the metadata of a file in the WebDAV filesystem. The function first reads

a (metadata) file from the system and loads it as a json file.

The json.load function is inherently dangerous and may cause a DoS if the file content is malicious.

Get_multi

This function retrieves the files provided in the list of hrefs. The list of files are then passed the to __get

for processing.

The __get function reads the file contents as raw text and hashes it.

Get_filtered

This function retrieves all the files available via get_all, and filters the list based on the filters provided.

Get_all simply calls __get for every path found in the filesystem. Again, the files were read but the

contents are not processed dangerously.

Sync

The sync function takes in a sync-token and ensures that it is a 64 characters long, hexadecimal string.

A sha256 hash of the history of all existing and deleted items under the storage path is generated and

compared to the token provided by the user. No action is taken if the token is the same value.

If the old_token name is different, the function attempts to open a file of the same name from

/path/.Radicale.cache/sync-token/. After opening the file, the pickle module is used to load the file into

old_state.

Pickle is a python object serialization module. This module is not secure and it is possible to execute

arbitrary code during unpickling (loading).

If a malicious token file is introduced into the sync-token folder, Radicale will blindly “unpickle” the file

and cause code execution. An example of how to exploit pickle and execute system commands can be

found in this link: https://davidhamann.de/2020/04/05/exploiting-python-pickle/

Exploiting Radicale
As previously mentioned, the go server contained a write-what-where vulnerability. To recap, this allowed

the user to upload any file and move it to any location on the WebDAV filesystem. Since both servers

serve the same filesystem paths, the user can move a malicious token into the .Radicale.cache/sync-token

folder.

Generating the Token Folder
The Radicale server does not create the sync-token folder by default. The folder is only created when the

user requests for a sync-token via PROPFIND or REPORT. The relevant code from propfind.py is shown

below.

https://davidhamann.de/2020/04/05/exploiting-python-pickle/

The relevant code from report.py is shown below.

When sync is called without a token value, the function will proceed to create the folders as well as the

token file. The relevant code from sync is shown below.

Exploitation Steps
To get Radicale to execute malicious code, the following steps are taken.

1. Generate a pickle file that spawns a reverse shell

2. Open a listening port for reverse shell connection

3. Request for a sync token using PROPFIND or REPORT on Radicale (creating the token folder)

4. PUT the pickled reverse shell into the server via go (35128)

curl -i -u jrarj:H3110fr13nD -T pickled http://
http://chal02w3tgq6sy7hakz4q9oywcevzb7v6j1jpv.ctf.sg:35128/jrarj/default/pickled

5. MOVE pickled into .Radicale.cache/sync-token folder, naming it with a fake sha256 hash.

6. Use REPORT to query for the sync-token, triggering the pickle.loads on the reverse shell

After pickle.loads is trigger in the sync function, the server will make a connection to the listening port

with bash capabilities. Listing the flag text file on the system will reveal the flag:

TISC{Y0uR_D4yS_ArE_nuMb3reD_34cc2686}

Level 8 – PANLINDROME Vault

Intro
A PALINDROME shell with various keywords blacklisted is hosted on PALINDROME’s server. The user is

required to determine the shell constraints and find a way to escape the shell.

Playing with the Shell
When accessing the shell, the user is presented with a banner.

Attempts to enter various keywords or phrases into the shell resulted in one of these two messages:

 [-] Error detected!

 [-] Too naïve!

Whereas certain keywords resulted in no verbosity from the shell.

It seemed that blacklisted keywords resulted in “Too naïve!”, allowed keywords end up with no verbosity,

and everything else resulted in “Error detected!”

Determining the Blacklist
Initially thought of as a regular Linux shell, a list of busybox commands was tested against the shell to

determine the blacklist. The list of commands available is long, so only the important test results are

shown below.

Busybox Commands Blacklisted

base32 Yes

base64

basename

eval

exec

nandwrite

logread

read

readahead

readlink

readonly

readprofile

openvt

dos2unix

hostid

hostname

iostat

losetup

mkdosfs

unix2dos

help No

id

set

hash

Certain blacklisted busybox commands were strange. For example, some of the highlighted commands in

the list did not appear to be useful for exploitation. However, the highlighted commands have something

in common: they contained the letters “os”. Entering the keyword “os” showed that it is indeed the

blacklisted keyword.

Using the same logic on the rest of the blacklisted commands, the blacklist is reduced to the following.

Commands Blacklisted

base Yes

eval

exec

write

read

open

os

help No

id

set

hash

The reduced blacklist showed that some of these commands did not exist in busybox or Linux. Instead,

the commands looked like python functions, especially “os”. Using a simple print statement to test the

shell confirmed that it is indeed a python shell.

Escaping the Shell
To escape the python shell and get full access to python’s functionalities, the blacklist has to be removed.

First, the variables extant in the python environment has to be printed out. This can be done by using the

built-in globals function.

Printing the globals dictionary in PALINDROME shell.

In the output, the “bl” variable appeared to be the blacklist. Since the “=” sign is also in the blacklist,

attempts to set the blacklist to null is blocked.

Fortunately, python provides special class methods to get and set items. One such method is the

__setitem__ special method.

In simpler terms, the method is used for setting key values in the object. In the case of the globals()

dictionary, the method can be used to assign values to variables. As such, the blacklist can be cleared by

calling globals().__setitem__(“bl”, “”).

After removing the blacklist, the python shell worked normally. Using the “os” module to read the list of

files in the current working directory revealed several files in the folder.

Downloading the Files
Using python, the files can be transferred over to the user via a reverse shell or by reading and displaying

the contents of the file in base64 encoding.

Reverse Shell Way

Base64 Way

Analyzing the Files
The contents of admin_notes.txt mentioned a key verification program and hints that the program may

leak information about the key. From the list of files downloaded, main.exe seemed to be the only

executable program.

Main.exe
Main.exe is a PE64 program that runs on windows. The program imports a function named “hello” from

the DLL helloiff.dll.

When run, the program mentions about checking the first partial key, before requesting for the second

partial key.

Searching for references to the strings in the disassembler led to the main_main function.

The first part of the key is checked in the main_check function, and the result of this function must be

0x3B7.

Main_check

In main_check, the function generates 5 random numbers using the golang’s math.rand.Intn function.

The value range for these 5 generated numbers are shown in the comments.

Next, the program adds these 5 values together and checks if the resultant value is smaller than a

hardcoded value. As there are a total of 168 comparisons, only 8 of them are shown below.

Whenever each comparison is true, the result variable will be increased. The value range for the sum of

the 5 generated numbers can be calculated by adding the ranges of each number together. The resultant

value range is:

[66 + 80 + 100 + 120 + 181, 101 + 121 + 232 + 278 + 322) = [547, 1054)

Using the value range [547, 1054) and looking at the comparisons again, they seem to always result in

either true or false. Using the above 8 examples, the result of the comparisons are:

1. False -> 0

2. True -> 1

3. True -> 1

4. False -> 0

5. True -> 1

6. False -> 0

7. True -> 1

8. True -> 1

If each comparison is treated as a bit value, the set of 8 comparisons will result in the bit value 01101011.

This value translates to 0x6B in hexadecimal, and that is the letter “k” in ASCII. Using the same logic on all

168 comparisons, a 21 characters long string is decoded: key{th3_gR34t_E5c4p3_

Helloffi.dll
After the first partial key is checked, the main_main function requests for the second part of the key for

verification. The function then calls main__Cfunc_hello_abi0 to process the user input string.

The main__Cfunc_hello_abi0 function is simply a wrapper for a call to the hello function in helloffi.dll.

The hello function attempts to decode the user input string as either UTF-8 or UTF-32 (this is an

assumption based on observation). The function ensures that the decoded string is 9 characters long.

If the string is not 9 characters long, the program prints “Something’s wrong” and exits.

If the string is 9 characters long but invalid, the program will output the “Incorrect!” string in the window

and exit.

For each character in the user input, the function attempts to decode it as a Unicode character. Assuming

that all characters are likely to be ASCII, the codes for decoding are ignored.

From the example above, the first two ASCII characters in the string have the following relationship.

𝐼𝑁𝑃𝑈𝑇(1) == 𝐼𝑁𝑃𝑈𝑇(2) ≫ 1 + 8

Following the code paths in the function, the relationship of the characters in the second partial key can

be summarized as the following simultaneous equations.

1. 𝐼𝑁𝑃𝑈𝑇(1) == 𝐼𝑁𝑃𝑈𝑇(2) ≫ 1 + 8

2. 𝐼𝑁𝑃𝑈𝑇(3) == 𝐼𝑁𝑃𝑈𝑇(2) + 2

3. 𝐼𝑁𝑃𝑈𝑇(4) == (𝐼𝑁𝑃𝑈𝑇(3) × 3) ≫ 2 − 0𝑥26

4. 𝐼𝑁𝑃𝑈𝑇(5) == (((𝐼𝑁𝑃𝑈𝑇(4) × 𝐼𝑁𝑃𝑈𝑇(4) − 0𝑥3𝐸9) × 0𝑥𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐷) ≫ 0𝑥22) − 0𝑥𝐴5

5. 𝐼𝑁𝑃𝑈𝑇(6) == 𝐼𝑁𝑃𝑈𝑇(5) + 1

6. 𝐼𝑁𝑃𝑈𝑇(7) == ((𝐼𝑁𝑃𝑈𝑇(6) × 0𝑥𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐷) ≫ 0𝑥22) + 0𝑥𝐴

7. 𝐼𝑁𝑃𝑈𝑇(8) == 𝐼𝑁𝑃𝑈𝑇(7)

8. 𝐼𝑁𝑃𝑈𝑇(9) == 𝑢𝑛𝑘𝑛𝑜𝑤𝑛

Solving the equation for all the inputs resulted in the word “Art1st!!” and the last character unknown.

Concatenating the two parts of the keys together resulted in “key{th3_gR34t_E5c4p3_Art1st!!”. By

observation, the last character of the key is likely to be “}”.

This forms the final key “key{th3_gR34t_E5c4p3_Art1st!!}”.

Getting the ZIP and Decoding the QR Code
Performing a hexdump on qq.enc showed that the last few bytes of the file contained parts of the key

from above.

The file appears to be xor encrypted with the key because anything xor’d with NULL will get back itself as

the value. As xor is the inverse of itself, performing a xor encryption again with the key on the file revealed

that it is a zip file. (PK is usually the magic header for a zip file)

The decrypted zip file that contained a png file which is a QR code with the palindrome logo in the middle.

QR code readers did not immediately recognize the image as the image color looked inverted. Inverting

the image in paint allowed the QR code to work normally.

Scanning the QR code revealed a rickroll youtube video, suggesting some sort of steganography at work.

The https://zxing.org/w/decode.jspx tool did better to decode as it did not stop decoding after the NULL

bytes decoded from the image.

TISC{I_4m_b3tT3r_tH4n_M1ch431_sc0F13lD_eed49e44d99fd61007a80af6a777af41a1c4f0a8}

https://zxing.org/w/decode.jspx

Level 9 – PanlindromeOS

Intro
This challenge is on Android Mobile Security that requires the player to obtain arbitrary kernel read and

write primitives. The primitives are then used to read the hidden flag from kernel memory.

Setting up the Emulator
Since no actual device Pixel 2XL device was provided, the next best thing was to set up an emulator using

Android SDK. After installing Android SDK, make use of the “Virtual Device Manager” or the “AVD

manager” to create a virtual Pixel 2XL device.

In the Virtual Device Manager, when prompted to select the system image, select Oreo API level 27, ABI

arm64-v8a under “Other Images”.

Once done, name the device as tisc and run the following command to run the device, and load the

provided kernel Image.

emulator -avd tisc -kernel ~/Downloads/lvl9/files/Image -qemu -machine virt –show-kernel

Gathering Information
Using strings on the vmlinux file and searching for palindrome reveals the following interesting strings in

the file.

Throwing the file into the disassembler, the “Welcome to PALINDROME’s box” string can be found

referenced in the check_irq_resend function. This function is the handler for a device’s read operation.

The file operations structure reveal the following:

File Operation Handler

read check_irq_resend

write get_file_handle

open binder_start_thread

release get_cpu_flags

The handlers for opening and releasing the character device does absolutely nothing. Whereas write

simply prints a string that says “[FLAG]: Flag device is read-only”.

The file operations structure is referened by the ahash_save_req function. This function initializes the

FLAG character device which reveals the existence of the FLAG device. However as seen from the file

operations, the device is of no interest.

Searching for “palinedromes_secret” lead to an exported kernel string. This string is not referenced

anywhere in the kernel.

Next, searching for the version keyword to obtain the kernel version of the image file lead to the following

discovery.

BadBinder CVE-2019-2215
Bad binder is a vulnerability in the Android kernel that was patched several years ago. To ensure that the

bug truly exists in the kernel and not a distraction, the binder_thread_release function was compared to

the pre-patch version of CVE-2019-2215. The patch (in green) was not found in the provided kernel file,

which meant that the bug still exists in the kernel.

It seems like the idea is to achieve arbitrary kernel read/write and “seek the correct offset” to obtain the

flag. Fortunately, as this bug is quite old, various POCs are available on Github. The specific POC used for

to exploit the bug can be found here: https://github.com/kangtastic/cve-2019-2215/blob/master/cve-

2019-2215.c

Exploiting BadBinder
Of course, the POC will not work out of the box as the offsets have probably changed. However, it is really

simple to update the offsets. Using the pahole program on the vmlinux file, the structures and their offsets

are dumped to a file. Without going into too much detail, the following offsets are the most important to

achieve arbitrary read/write.

 binder_thread->wait

 difference between binder_thread->wait and binder_thread->task

Binder_thread->wait’s offset is important because during refilling of the freed binder_thread object, the

value for binder_thread->wait.lock member should be 0. If the value is not 0, the binder_thread will spin

not pass the spinlock and the exploit will not succeed. Next the difference between binder_thread->wait

to binder_thread->task must be updated so that the exploit is able to find the task_struct address of the

current process. The task_struct address is then used to clobber the addr_limit value.

The POC mentioned above also defeats KASLR. The code obtains the kernel base address by obtaining

virtual addresses and subtracting a hardcoded offset from the address. These hardcoded offsets can be

https://github.com/kangtastic/cve-2019-2215/blob/master/cve-2019-2215.c
https://github.com/kangtastic/cve-2019-2215/blob/master/cve-2019-2215.c

found by querying the kallsyms file in the device. The following command is used to remove address

masking in the kallsyms file.

With the masking gone, it is possible to calculate the offset by taking the exported address of interest,

and minus the address of _head.

It is then trivial to read the palindromes_secret value at the said address, and print it out.

TISC{4LL_y0ur_5pac3_B3L0NG5_T0_m3}

